Stochastic Partial Differential Equations : A Modeling, White Noise Functional Approach (Probability and Its Applications)

個数:

Stochastic Partial Differential Equations : A Modeling, White Noise Functional Approach (Probability and Its Applications)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 231 p.
  • 言語 ENG
  • 商品コード 9781468492170
  • DDC分類 519

Full Description

This book is based on research that, to a large extent, started around 1990, when a research project on fluid flow in stochastic reservoirs was initiated by a group including some of us with the support of VISTA, a research coopera­ tion between the Norwegian Academy of Science and Letters and Den norske stats oljeselskap A.S. (Statoil). The purpose of the project was to use stochastic partial differential equations (SPDEs) to describe the flow of fluid in a medium where some of the parameters, e.g., the permeability, were stochastic or "noisy". We soon realized that the theory of SPDEs at the time was insufficient to handle such equations. Therefore it became our aim to develop a new mathematically rigorous theory that satisfied the following conditions. 1) The theory should be physically meaningful and realistic, and the corre­ sponding solutions should make sense physically and should be useful in applications. 2) The theory should be general enough to handle many of the interesting SPDEs that occur in reservoir theory and related areas. 3) The theory should be strong and efficient enough to allow us to solve th,‾se SPDEs explicitly, or at least provide algorithms or approximations for the solutions.

Contents

1. Introduction.- 1.1. Modeling by stochastic differential equations.- 2. Framework.- 2.1. White noise.- 2.2. The Wiener-Itô chaos expansion.- 2.3. Stochastic test functions and stochastic distributions.- 2.4. The Wick product.- 2.5. Wick multiplication and Itô/Skorohod integration.- 2.6. The Hermite transform.- 2.7. The S)p,rN spaces and the S-transform.- 2.8. The topology of (S)-1N.- 2.9. The F-transform and the Wick product on L1 (?).- 2.10. The Wick product and translation.- 2.11. Positivity.- 3. Applications to stochastic ordinary differential equations.- 3.1. Linear equations.- 3.2. A model for population growth in a crowded stochastic environment.- 3.3. A general existence and uniqueness theorem.- 3.4. The stochastic Volterra equation.- 3.5. Wick products versus ordinary products: A comparison experiment Variance properties.- 3.6. Solution and Wick approximation of quasilinear SDE.- 4. Stochastic partial differential equations.- 4.1. General remarks.- 4.2. The stochastic Poisson equation.- 4.3. The stochastic transport equation.- 4.4. The stochastic Schrödinger equation.- 4.5. The viscous Burgers' equation with a stochastic source.- 4.6. The stochastic pressure equation.- 4.7. The heat equation in a stochastic, anisotropic medium.- 4.8. A class of quasilinear parabolic SPDEs.- 4.9. SPDEs driven by Poissonian noise.- Appendix A. The Bochner-Minlos theorem.- Appendix B. A brief review of Itô calculus.- The Itô formula.- Stochastic differential equations.- The Girsanov theorem.- Appendix C. Properties of Hermite polynomials.- Appendix D. Independence of bases in Wick products.- References.- List of frequently used notation and symbols.

最近チェックした商品