Complexity Theory of Real Functions (Progress in Theoretical Computer Science)

個数:

Complexity Theory of Real Functions (Progress in Theoretical Computer Science)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 310 p.
  • 言語 ENG
  • 商品コード 9781468468045
  • DDC分類 004

Full Description

Starting with Cook's pioneering work on NP-completeness in 1970, polynomial complexity theory, the study of polynomial-time com­ putability, has quickly emerged as the new foundation of algorithms. On the one hand, it bridges the gap between the abstract approach of recursive function theory and the concrete approach of analysis of algorithms. It extends the notions and tools of the theory of computability to provide a solid theoretical foundation for the study of computational complexity of practical problems. In addition, the theoretical studies of the notion of polynomial-time tractability some­ times also yield interesting new practical algorithms. A typical exam­ ple is the application of the ellipsoid algorithm to combinatorial op­ timization problems (see, for example, Lovasz [1986]). On the other hand, it has a strong influence on many different branches of mathe­ matics, including combinatorial optimization, graph theory, number theory and cryptography. As a consequence, many researchers have begun to re-examine various branches of classical mathematics from the complexity point of view. For a given nonconstructive existence theorem in classical mathematics, one would like to find a construc­ tive proof which admits a polynomial-time algorithm for the solution. One of the examples is the recent work on algorithmic theory of per­ mutation groups. In the area of numerical computation, there are also two tradi­ tionally independent approaches: recursive analysis and numerical analysis.

Contents

Mathematics background.- Notation.- 1 Basics in Discrete Complexity Theory.- 1.1 Models of computation and complexity classes.- 1.2 NP-completeness.- 1.3 Polynomial-time hierarchy.- 1.4 Relativization.- 1.5 Probabilistic complexity classes.- 1.6 Complexity of counting.- 1.7 One-way functions.- 1.8 Polynomial-size circuits and sparse sets.- 2 Computational Complexity of Real Functions.- 2.1 Computable real numbers.- 2.2 Complexity of computable real numbers.- 2.3 Computable real functions.- 2.4 Complexity of computable real functions.- 2.5 Computable multi-dimensional functions.- 2.6 Partial computable real functions and recursively open sets.- 2.7 Computable numerical operators.- 3 Maximization.- 3.1 Computability of the maximum points.- 3.2 Maximization and nondeterminism.- 3.3 Maximum values and NP real numbers.- 3.4 Complexity of NP real numbers.- 3.5 Maximization and NP real functions.- 3.6 Hierarchy of min-max operations.- 3.7 Complexity of NP real functions.- 3.8 Open questions.- 4 Roots and Inverse Functions.- 4.1 Computability of roots.- 4.2 Complexity of roots and inverse modulus of continuity.- 4.3 Complexity of roots and differentiability.- 4.4 Log-space computable real functions.- 4.5 Log-space computability of roots of one-to-one functions.- 4.8 Open questions.- 5 Measure and Integration.- 5.1 Recursive measure theory.- 5.2 Polynomial-time approximation.- 5.3 Polynomial-time approximation and probabilistic computation.- 5.4 Complexity of integration.- 5.5 Open questions.- 6 Differentiation.- 6.1 Computability of derivatives.- 6.2 Derivatives of analytic functions.- 6.3 Functions of bounded variations.- 7 Ordinary Differential Equations.- 7.1 ODEs without the Lipschitz condition.- 7.2 ODEs with the Lipschitz condition: upper bound.- 7.3 ODEs with the Lipschitz condition: lower bound.- 7.4 Open questions.- 8 Approximation by Polynomials.- 8.1 Polynomial Version of the Weierstrass approximation theorem.- 8.2 Best Chebyshev approximation: complexity of the errors.- 8.3 Best Chebyshev approximation: complexity of the approximation functions.- 9 An Optimization Problem in Control Theory.- 9.1 A discrete version.- 9.2 The basic construction.- 9.3 The complexity of LCTEAM.

最近チェックした商品