年齢・時代・コーホート分析<br>Age-Period-Cohort Analysis : New Models, Methods, and Empirical Applications (Chapman & Hall/crc Interdisciplinary Statistics)

個数:
電子版価格
¥0
  • 電子版あり

年齢・時代・コーホート分析
Age-Period-Cohort Analysis : New Models, Methods, and Empirical Applications (Chapman & Hall/crc Interdisciplinary Statistics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 352 p.
  • 言語 ENG
  • 商品コード 9781466507524
  • DDC分類 300.727

Full Description

Age-Period-Cohort Analysis: New Models, Methods, and Empirical Applications is based on a decade of the authors' collaborative work in age-period-cohort (APC) analysis. Within a single, consistent HAPC-GLMM statistical modeling framework, the authors synthesize APC models and methods for three research designs: age-by-time period tables of population rates or proportions, repeated cross-section sample surveys, and accelerated longitudinal panel studies. The authors show how the empirical application of the models to various problems leads to many fascinating findings on how outcome variables develop along the age, period, and cohort dimensions.

The book makes two essential contributions to quantitative studies of time-related change. Through the introduction of the GLMM framework, it shows how innovative estimation methods and new model specifications can be used to tackle the "model identification problem" that has hampered the development and empirical application of APC analysis. The book also addresses the major criticism against APC analysis by explaining the use of new models within the GLMM framework to uncover mechanisms underlying age patterns and temporal trends.

Encompassing both methodological expositions and empirical studies, this book explores the ways in which statistical models, methods, and research designs can be used to open new possibilities for APC analysis. It compares new and existing models and methods and provides useful guidelines on how to conduct APC analysis. For empirical illustrations, the text incorporates examples from a variety of disciplines, such as sociology, demography, and epidemiology. Along with details on empirical analyses, software and programs to estimate the models are available on the book's web page.

Contents

Introduction. Why Cohort Analysis? APC Analysis of Data from Three Common Research Designs. Formalities of the Age-Period-Cohort Analysis Conundrum and a Generalized Linear Mixed Models (GLMM) Framework. APC Accounting/Multiple Classification Model, Part I: Model Identification and Estimation Using the Intrinsic Estimator. APC Accounting/Multiple Classification Model, Part II: Empirical Applications. Mixed Effects Models: Hierarchical APC-Cross-Classified Random Effects Models (HAPC-CCREM), Part I: The Basics. Mixed Effects Models: Hierarchical APC-Cross-Classified Random Effects Models (HAPC-CCREM), Part II: Advanced Analyses. Mixed Effects Models: Hierarchical APC-Growth Curve Analysis of Prospective Cohort Data. Directions for Future Research and Conclusion. Index.

最近チェックした商品