応用欠損データ分析(第2版)<br>Applied Missing Data Analysis, Second Edition (2ND)

個数:

応用欠損データ分析(第2版)
Applied Missing Data Analysis, Second Edition (2ND)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 546 p.
  • 言語 ENG
  • 商品コード 9781462549863
  • DDC分類 300.15195

Full Description

The most user-friendly and authoritative resource on missing data has been completely revised to make room for the latest developments that make handling missing data more effective. The second edition includes new methods based on factored regressions, newer model-based imputation strategies, and innovations in Bayesian analysis. State-of-the-art technical literature on missing data is translated into accessible guidelines for applied researchers and graduate students. The second edition takes an even, three-pronged approach to maximum likelihood estimation (MLE), Bayesian estimation as an alternative to MLE, and multiple imputation. Consistently organized chapters explain the rationale and procedural details for each technique and illustrate the analyses with engaging worked-through examples on such topics as young adult smoking, employee turnover, and chronic pain. The companion website (www.appliedmissingdata.com) includes data sets and analysis examples from the book, up-to-date software information, and other resources.

New to This Edition
*Expanded coverage of Bayesian estimation, including a new chapter on incomplete categorical variables.
*New chapters on factored regressions, model-based imputation strategies, multilevel missing data-handling methods, missing not at random analyses, and other timely topics.
*Presents cutting-edge methods developed since the 2010 first edition; includes dozens of new data analysis examples.
*Most of the book is entirely new.

Contents

1. Introduction to Missing Data
1.1 Chapter Overview
1.2 Missing Data Patterns
1.3 Missing Data Mechanisms
1.4 Diagnosing Missing Data Mechanisms
1.5 Auxiliary Variables
1.6 Analysis Example: Preparing for Missing Data Handling
1.7 Older Missing Data Methods
1.8 Comparing Missing Data Methods via Simulation
1.9 Planned Missing Data
1.10 Power Analyses for Planned Missingness Designs
1.11 Summary and Recommended Readings
2. Maximum Likelihood Estimation
2.1 Chapter Overview
2.2 Probability Distributions versus Likelihood Functions
2.3 The Univariate Normal Distribution
2.4 Estimating Unknown Parameters
2.5 Getting an Analytic Solution
2.6 Estimating Standard Errors
2.7 Information Matrix and Parameter Covariance Matrix
2.8 Alternative Approaches to Estimating Standard Errors
2.9 Iterative Optimization Algorithms
2.10 Linear Regression
2.11 Significance Tests
2.12 Multivariate Normal Data
2.13 Categorical Outcomes: Logistic and Probit Regression
2.14 Summary and Recommended Readings
3. Maximum Likelihood Estimation with Missing Data
3.1 Chapter Overview
3.2 The Multivariate Normal Distribution Revisited
3.3 How Do Incomplete Data Records Help?
3.4 Standard Errors with Incomplete Data
3.5 The Expectation Maximization Algorithm
3.6 Linear Regression
3.7 Significance Testing
3.8 Interaction Effects
3.9 Curvilinear Effects
3.10 Auxiliary Variables
3.11 Categorical Outcomes
3.12 Summary and Recommended Readings
4. Bayesian Estimation
4.1 Chapter Overview
4.2 What Makes Bayesian Statistics Different?
4.3 Conceptual Overview of Bayesian Estimation
4.4 Bayes' Theorem
4.5 The Univariate Normal Distribution
4.6 MCMC Estimation with the Gibbs Sampler
4.7 Estimating the Mean and Variance with MCMC
4.8 Linear Regression
4.9 Assessing Convergence of the Gibbs Sampler
4.10 Multivariate Normal Data
4.11 Summary and Recommended Readings
5. Bayesian Estimation with Missing Data
5.1 Chapter Overview
5.2 Imputing an Incomplete Outcome Variable
5.3 Linear Regression
5.4 Interaction Effects
5.5 Inspecting Imputations
5.6 The Metropolis-Hastings Algorithm
5.7 Curvilinear Effects
5.8 Auxiliary Variables
5.9 Multivariate Normal Data
5.10 Summary and Recommended Readings
6. Bayesian Estimation for Categorical Variables
6.1 Chapter Overview
6.2 Latent Response Formulation for Categorical Variables
6.3 Regression with a Binary Outcome
6.4 Regression with an Ordinal Outcome
6.5 Binary and Ordinal Predictor Variables
6.6 Latent Response Formulation for Nominal Variables
6.7 Regression with a Nominal Outcome
6.8 Nominal Predictor Variables
6.9 Logistic Regression
6.10 Summary and Recommended Readings
7. Multiple Imputation
7.1 Chapter Overview
7.2 Agnostic versus Model-Based Multiple Imputation
7.3 Joint Model Imputation
7.4 Fully Conditional Specification
7.5 Analyzing Multiply-Imputed Data Sets
7.6 Pooling Parameter Estimates
7.7 Pooling Standard Errors
7.8 Test Statistic and Confidence Intervals
7.9 When Might Multiple Imputation Give Different Answers?
7.10 Interaction and Curvilinear Effects Revisited
7.11 Model-Based Imputation
7.12 Multivariate Significance Tests
7.13 Summary and Recommended Readings
8. Multilevel Missing Data
8.1 Chapter Overview
8.2 Random Intercept Regression Models
8.3 Random Coefficient Models
8.4 Multilevel Interaction Effects
8.5 Three-Level Models
8.6 Multiple Imputation
8.7 Joint Model Imputation
8.8 Fully Conditional Specification Imputation
8.9 Maximum Likelihood Estimation
8.10 Summary and Recommended Readings
9. Missing Not at Random Processes
9.1 Chapter Overview
9.2 Missing Not at Random Processes Revisited
9.3 Major Modeling Frameworks
9.4 Selection Models for Multiple Regression
9.5 Model Comparisons and Individual Influence Diagnostics
9.6 Selection Model Analysis Examples
9.7 Pattern Mixture Models for Multiple Regression
9.8 Pattern Mixture Model Analysis Examples
9.9 Longitudinal Data Analyses
9.10 Diggle-Kenward Selection Model
9.11 Shared Parameter (Random Coefficient) Selection Model
9.12 Random Coefficient Pattern Mixture Models
9.13 Longitudinal Data Analysis Examples
9.14 Summary and Recommended Readings
10. Special Topics and Applications
10.1 Chapter Overview
10.2 Descriptive Summaries, Correlations, and Subgroups
10.3 Non-Normal Predictor Variables
10.4 Non-Normal Outcome Variables
10.5 Mediation and Indirect Effects
10.6 Structural Equation Models
10.7 Scale Scores and Missing Questionnaire Items
10.8 Interactions with Scales
10.9 Longitudinal Data Analyses
10.10 Regression with a Count Outcome
10.11 Power Analyses for Growth Models with Missing Data
10.12 Summary and Recommended Readings
11. Wrap-Up
11.1 Chapter Overview
11.2 Choosing a Missing Data-Handling Procedure
11.3 Software Landscape
11.4 Reporting Results from a Missing Data Analysis
11.5 Final Thoughts and Recommended Readings
Appendix. Data Set Descriptions
Author Index
Subject Index
About the Author

最近チェックした商品