Data Analysis with Mplus (Methodology in the Social Sciences)

個数:

Data Analysis with Mplus (Methodology in the Social Sciences)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 305 p.
  • 言語 ENG
  • 商品コード 9781462502455
  • DDC分類 519.535028553

Full Description

A practical introduction to using Mplus for the analysis of multivariate data, this volume provides step-by-step guidance, complete with real data examples, numerous screen shots, and output excerpts. The author shows how to prepare a data set for import in Mplus using SPSS. He explains how to specify different types of models in Mplus syntax and address typical caveats--for example, assessing measurement invariance in longitudinal SEMs. Coverage includes path and factor analytic models as well as mediational, longitudinal, multilevel, and latent class models. Specific programming tips and solution strategies are presented in boxes in each chapter. The companion website (www.guilford.com/geiser-materials) features data sets, annotated syntax files, and output for all of the examples. Of special utility to instructors and students, many of the examples can be run with the free demo version of Mplus.

Contents

1. Data Management in SPSS
1.1 Coding Missing Values
1.2 Exporting an ASCII Data File for Mplus
2. Reading Data into Mplus
2.1 Importing and Analyzing Individual Data (Raw Data)
2.1.1 Basic Structure of the Mplus Syntax and Basic Analysis
2.1.2 Mplus Output for Basic Analysis
2.2 Importing and Analyzing Summary Data (Covariance or Correlation Matrices)
3. Linear Structural Equation Models
3.1 What are Linear SEMs?
3.2 Simple Linear Regression Analysis with Manifest Variables
3.3 Latent Regression Analysis
3.4 Confirmatory Factor Analysis
3.4.1 First-Order CFA
3.4.2 Second-Order CFA
3.5 Path Models and Mediator Analysis
3.5.1 Introduction and Manifest Path Analysis
3.5.2 Manifest Path Analysis in Mplus
3.5.3 Latent Path Analysis
3.5.4 Latent Path Analysis in Mplus
4. Structural Equation Models for Measuring Variability and Change
4.1 Latent State Analysis
4.1.1 LS versus LST Models
4.1.2 Analysis of LS Models in Mplus
4.1.3 Modeling Indicator-Specific Effects
4.1.4 Testing for Measurement Invariance across Time
4.2 LST Analysis
4.3 Autoregressive Models
4.3.1 Manifest Autoregressive Models
4.3.2 Latent Autoregressive Models
4.4 Latent Change Models
4.5 Latent Growth Curve Models
4.5.1 First-Order LGCMs
4.5.2 Second-Order LGCMs
5. Multilevel Regression Analysis
5.1 Introduction to Multilevel Analysis
5.2 Specification of Multilevel Models in Mplus
5.3 Option two level basic
5.4 Random Intercept Models
5.4.1 Null Model (Intercept-Only Model)
5.4.2 One-Way Random Effects of ANCOVA
5.4.3 Means-as-Outcomes Model
5.5 Random Intercept and Slope Models
5.5.1 Random Coefficient Regression Analysis
5.5.2 Intercepts-and-Slopes-as-Outcomes Model
6. Latent Class Analysis
6.1 Introduction to Latent Class Analysis
6.2 Specification of LCA Models in Mplus
6.3 Model Fit Assessment and Model Comparisons
6.3.1 Absolute Model Fit
6.3.2 Relative Model Fit
6.3.3 Interpretability
Appendix A: Summary of Key Mplus Commands Discussed in This Book
Appendix B: Common Mistakes in the Mplus Input Setup and Troubleshooting
Appendix C: Further Readings

最近チェックした商品