臨床分析支援のための電子カルテ匿名化<br>Anonymization of Electronic Medical Records to Support Clinical Analysis (SpringerBriefs in Electrical and Computer Engineering)

個数:

臨床分析支援のための電子カルテ匿名化
Anonymization of Electronic Medical Records to Support Clinical Analysis (SpringerBriefs in Electrical and Computer Engineering)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 96 p./サイズ 23 illus., 8 in color.
  • 言語 ENG
  • 商品コード 9781461456674
  • DDC分類 005

基本説明

Closely examines the privacy threats that may arise from medical data sharing, and surveys the state-of-the-art methods developed to safeguard data against these threats.

Full Description

Anonymization of Electronic Medical Records to Support Clinical Analysis closely examines the privacy threats that may arise from medical data sharing, and surveys the state-of-the-art methods developed to safeguard data against these threats.

To motivate the need for computational methods, the book first explores the main challenges facing the privacy-protection of medical data using the existing policies, practices and regulations. Then, it takes an in-depth look at the popular computational privacy-preserving methods that have been developed for demographic, clinical and genomic data sharing, and closely analyzes the privacy principles behind these methods, as well as the optimization and algorithmic strategies that they employ. Finally, through a series of in-depth case studies that highlight data from the US Census as well as the Vanderbilt University Medical Center, the book outlines a new, innovative class of privacy-preserving methods designed to ensure the integrityof transferred medical data for subsequent analysis, such as discovering or validating associations between clinical and genomic information.

Anonymization of Electronic Medical Records to Support Clinical Analysis is intended for professionals as a reference guide for safeguarding the privacy and data integrity of sensitive medical records. Academics and other research scientists will also find the book invaluable.

Contents

Introduction.- Overview of patient data anonymization.- Re-identification of clinical data through diagnosis information.- Preventing re-identification while supporting GWAS.- Case study on electronic medical records data.- Conclusions and open research challenges.- Index.

最近チェックした商品