数理解析における関数方程式<br>Functional Equations in Mathematical Analysis (Springer Optimization and Its Applications)

個数:
電子版価格
¥38,937
  • 電子版あり
  • ポイントキャンペーン

数理解析における関数方程式
Functional Equations in Mathematical Analysis (Springer Optimization and Its Applications)

  • ウェブストア価格 ¥47,081(本体¥42,801)
  • Springer Verlag(2011/09発売)
  • 外貨定価 US$ 219.99
  • 読書週間 ポイント2倍キャンペーン 対象商品(~11/9)
  • ポイント 856pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 748 p.
  • 言語 ENG
  • 商品コード 9781461400547
  • DDC分類 515

Full Description

The stability problem for approximate homomorphisms, or the Ulam stability problem, was posed by S. M. Ulam in the year 1941. The solution of this problem for various classes of equations is an expanding area of research. In particular, the pursuit of solutions to the Hyers-Ulam and Hyers-Ulam-Rassias stability problems for sets of functional equations and ineqalities has led to an outpouring of recent research.

 

This volume, dedicated to S. M. Ulam, presents the most recent results on the solution to Ulam stability problems for various classes of functional equations and inequalities. Comprised of invited contributions from notable researchers and experts, this volume presents several important types of functional equations and inequalities and their applications to problems in mathematical analysis, geometry, physics and applied mathematics.

 

"Functional Equations in Mathematical Analysis" is intended for researchers and students in mathematics, physics, and other computational and applied sciences.

Contents

Preface.- 1. Stability properties of some functional equations (R. Badora).- 2. Note on superstability of Mikusiński's functional equation (B. Batko).- 3. A general fixed point method for the stability of Cauchy functional equation (L. Cădariu, V. Radu).- 4. Orthogonality preserving property and its Ulam stability (J. Chmieliński).- 5. On the Hyers-Ulam stability of functional equations with respect to bounded distributions (J.-U. Chung).- 6. Stability of multi-Jensen mappings in non-Archimedean normed spaces (K. Ciepliński).- 7. On stability of the equation of homogeneous functions on topological spaces (S. Czerwik).- 8. Hyers-Ulam stability of the quadratic functional equation (E. Elhoucien, M. Youssef, T. M. Rassias).- 9. Intuitionistic fuzzy approximately additive mappings (M. Eshaghi-Gordji, H. Khodaei, H. Baghani, M. Ramezani).- 10. Stability of the pexiderized Cauchy functional equation in non-Archimedean spaces (G. Z. Eskandani, P. Găvruţa).- 11. Generalized Hyers-Ulam stability for general quadratic functional equation in quasi-Banach spaces (J. Gao).- 12. Ulam stability problem for frames (L. Găvruţa, P. Găvruţa).- 13. Generalized Hyers-Ulam stability of a quadratic functional equation (K.-W. Jun, H-M. Kim, J. Son).- 14. On the Hyers-Ulam-Rassias stability of the bi-Pexider functional equation (K.-W. Jun, Y.-H. Lee).- 15. Approximately midconvex functions (K. Misztal, J. Tabor, J. Tabor).- 16. The Hyers-Ulam and Ger type stabilities of the first order linear differential equations (T. Miura, G. Hirasawa).- 17. On the Butler-Rassias functional equation and its generalized Hyers-Ulam stability (T. Miura, G. Hirasawa, T. Hayata).- 18. A note on the stability of an integral equation (T. Miura, G. Hirasawa, S.-E. Takahasi, T. Hayata).- 19. On the stability of polynomial equations (A. Najati, T. M. Rassias).- 20. Isomorphisms and derivations in proper JCQ*-triples (C. Park, M. Eshaghi-Gordji).- 21. Fuzzy stability of anadditive-quartic functional equation: a fixed point approach (C. Park, T.M. Rassias).- 22. Selections of set-valued maps satisfying functional inclusions on square-symmetric grupoids (D. Popa).- 23. On stability of isometries in Banach spaces (V.Y. Protasov).- 24. Ulam stability of the operatorial equations (I.A. Rus).- 25. Stability of the quadratic-cubic functional equation in quasi-Banach spaces (Z. Wang, W. Zhang).- 26. μ-trigonometric functional equations and Hyers-Ulam stability problem in hypergroups (D. Zeglami, S. Kabbaj, A. Charifi, A. Roukbi).- 27. On multivariate Ostrowski type inequalities (Z Changjian, W.-S. Cheung).- 28. Ternary semigroups and ternary algebras (A. Chronowski).- 29. Popoviciu type functional equations on groups (M. Chudziak).- 30. Norm and numerical radius inequalities for two linear operators in Hillbert spaces: a survey of recent results (S.S. Dragomir).- 31. Cauchy's functional equation and nowhere continuous/everywhere dense Costas bijections in Euclidean spaces (K. Drakakis).- 32. On solutions of some generalizations of the Gołąb-Schinzel equation (E. Jabłońska).- 33. One-parameter groups of formal power series of one indeterminate (W. Jabłoński).- 34. On some problems concerning a sum type operator (H.H. Kairies).- 35. Priors on the space of unimodal probability measures (G. Kouvaras, G. Kokolakis).- 36. Generalized weighted arithmetic means (J. Matkowski).- 37. On means which are quasi-arithmetic and of the Beckenbach-Gini type (J. Matkowski).- 38. Scalar Riemann-Hillbert problem for multiply connected domains (V.V. Mityushev).- 39. Hodge theory for Riemannian solenoids (V. Muñoz, R.P. Marco).- 40. On solutions of a generalization of the Gołąb-Schinzel functional equation (A. Mureńko).- 41. On functional equation containing an indexed family of unknown mappings (P. Nath, D.K. Singh).- 42. Two-step iterative method for nonconvex bifunction variational inequalities (M.A. Noor, K.I. Noor, E. Al-Said).- 43. On aSincov type functional equation (P. K. Sahoo).- 44. Invariance in some families of means (G. Toader, I. Costin, S. Toader).- 45. On a Hillbert-type integral inequality (B. Yang).- 46. An extension of Hardy-Hillbert's inequality (B. Yang).- 47. A relation to Hillbert's integral inequality and a basic Hillbert-type inequality (B. Yang, T.M. Rassias).

最近チェックした商品