Difference Methods and Their Extrapolations (Stochastic Modelling and Applied Probability) (Reprint)

個数:
  • ポイントキャンペーン

Difference Methods and Their Extrapolations (Stochastic Modelling and Applied Probability) (Reprint)

  • ウェブストア価格 ¥11,845(本体¥10,769)
  • Springer Verlag(2012/07発売)
  • 外貨定価 US$ 54.99
  • 読書週間 ポイント2倍キャンペーン 対象商品(~11/9)
  • ポイント 214pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 334 p.
  • 言語 ENG
  • 商品コード 9781461382263
  • DDC分類 513

Full Description

The stimulus for the present work is the growing need for more accurate numerical methods. The rapid advances in computer technology have not provided the resources for computations which make use of methods with low accuracy. The computational speed of computers is continually increasing, while memory still remains a problem when one handles large arrays. More accurate numerical methods allow us to reduce the overall computation time by of magnitude. several orders The problem of finding the most efficient methods for the numerical solution of equations, under the assumption of fixed array size, is therefore of paramount importance. Advances in the applied sciences, such as aerodynamics, hydrodynamics, particle transport, and scattering, have increased the demands placed on numerical mathematics. New mathematical models, describing various physical phenomena in greater detail than ever before, create new demands on applied mathematics, and have acted as a major impetus to the development of computer science. For example, when investigating the stability of a fluid flowing around an object one needs to solve the low viscosity form of certain hydrodynamic equations describing the fluid flow. The usual numerical methods for doing so require the introduction of a "computational viscosity," which usually exceeds the physical value; the results obtained thus present a distorted picture of the phenomena under study. A similar situation arises in the study of behavior of the oceans, assuming weak turbulence. Many additional examples of this type can be given.

Contents

1 General Properties.- 1.1. The Simplest Example.- 1.2. Expansion Theorems.- 1.3. Acceleration of Convergence.- 1.4. Correction by Higher-Order Differences.- 1.5. Various Extrapolation Methods.- 1.6. The Effects of Computational Errors.- 2 First-Order Ordinary Differential Equations.- 2.1. The Crank-Nicholson Scheme.- 2.2. Explicit Difference Schemes.- 2.3. The Splitting-Up Method for Systems of Equations.- 2.4. Equations with Singularities.- 3 The One-Dimensional Stationary Diffusion Equation.- 3.1. The Dirichlet Problem.- 3.2. Boundary-Value Problems of the Third Kind.- 3.3. Equations with Discontinuous Coefficients.- 3.4. The Sturm-Liouville Problem.- 3.5. Improving the Accuracy of the Finite Elements Method.- 3.6. The Quasilinear Problem.- 4 Elliptic Equations.- 4.1. The Statement of the Problem.- 4.2. Difference Methods for the Dirichlet Problem on a Domain with a Smooth Boundary.- 4.3. The Dirichlet Problem in a Rectangle.- 4.4. A Quasilinear Equation in a Triangular Region.- 4.5. On the Diffraction Problem.- 4.6. On the Separation of Singularities.- 5 Nonstationary Problems.- 5.1. The Simplest Type of Parabolic Equation.- 5.2. Increasing the Accuracy of the Splitting-Up Method.- 5.3. The Two-Dimensional Heat Equation.- 5.4. The Equation of Motion.- 6 Extrapolation for Algebraic Problems and Integral Equations.- 6.1. Regularization of a Singular System of Linear Algebraic Equations.- 6.2. Regularization of a System with a Selfadjoint Matrix.- 6.3. Extrapolation of Solutions Containing Boundary-Layer Functions.- 6.4. The Fredholm Equation of the Second Kind.- 6.5. The Volterra Equation of the Second Kind.- 6.6. The Volterra Equation of the First Kind.- 7 Appendix.- 7.1. Expansion of Difference Relations in the Mesh-Size.- 7.2. On the Solution of Some Special Systems of Equations.- 7.3. Some Results on the Lagrange Interpolation Polynomials.- List of Notation.

最近チェックした商品