Cavitation Reaction Engineering (The Plenum Chemical Engineering Series)

個数:

Cavitation Reaction Engineering (The Plenum Chemical Engineering Series)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 352 p.
  • 言語 ENG
  • 商品コード 9781461371687
  • DDC分類 660

Full Description

The literature on cavitation chemistry is ripe with conjectures, possibilities, heuris­ tic arguments, and intelligent guesses. The chemical effects of cavitation have been explained by means of many theories, consisting of empirical constants, adjustable parameters, and the like. The chemists working with cavitation chemistry agree that the phenomenon is very complex and system specific. Mathematicians and physi­ cists have offered partial solutions to the observed phenomena on the basis of cavitation parameters, whereas chemists have attempted explanations based on the modes of reaction and the detection of intermediate chemical species. Nevertheless, no one has been able to formulate a unified theme, however crude, for its effects on the basis of the known parameters, such as cavitation and transient chemistry involving extremely high temperatures of nanosecond durations. When one surveys the literature on cavitation-assisted reactions, it is clear that the approach so far has been "Edisonian" in nature. While a large number of reactions have showed either enhanced yields or reduced reaction times, many reactions have remained unaffected in the presence of cavitation. The success or failure of cavitation reactions ultimately depends on the collapse of the cavity. Cavitation chemistry is based on the principles of the formation of small transient cavities, their growth and implosion, which produce chemical reactions caused by the generation of extreme pressures and temperatures and a high degree of micro­ turbulence.

Contents

1. Sources and Types of Cavitation.- 1.1. Introduction.- 1.2. Hydrodynamic Cavitation.- 1.3. Acoustic Cavitation.- 1.4. Optic and Particle Cavitation.- 2. Cavitation Bubble Dynamics.- 2.1. Introduction.- 2.2. Bubble Dynamics.- 2.3. Cluster Dynamics.- 2.4. Heat and Mass Transfer Effects in Cavitation.- 2.5. Concluding Remarks.- 3. Factors Affecting Cavitation Behavior.- 3.1. Introduction.- 3.2. Factors Affecting Cavity Behavior in Hydrodynamic Cavitation.- 3.3. Factors Affecting Cavity Behavior in Acoustic Cavitation.- 3.4. Factors Affecting Optical Cavitation.- 3.5. Factors Affecting Cavity Cluster Behavior in Hydrodynamic Cavitation.- 3.6. Factors Affecting Cavity Cluster Behavior in Acoustic Cavitation.- 3.7. Concluding Remarks.- 4. Gas-Liquid Cavitation Chemistry.- 4.1. Introduction.- 4.2. Mechanisms for Cavitation Reaction.- 4.3. Factors Affecting Cavitation Chemistry.- 4.4. Inorganic and Organic Cavitation Reactions.- 4.5. Depolymerization and Repolymerization Reactions.- 4.6. Ultrasound and Homogeneous Oxidation.- 4.7. Ultrasound and Liquid-Liquid Phase-Transfer Reactions.- 5. Gas-Liquid-Solid Cavitation Chemistry.- 5.1. Introduction.- 5.2. General Effects of Ultrasound on Gas-Liquid-Solid Reactions.- 5.3. Specific Role of Ultrasound on Gas-Liquid-Solid Reactions.- 5.4. Case Studies.- 6. Cavitation Reactors.- 6.1. Introduction.- 6.2. Hydrodynamic Cavitation Reactors.- 6.3. Acoustic Cavitation Reactors.- 6.4. Laser Cavitation Reactors.- 6.5. Some Additional Considerations for Flow Reactors.- 6.6. Health and Safety Aspects of Laboratory Reactors.- 6.7. Integration of Cavitation into Existing Scaled-Up Processes.- 6.8. Concluding Remarks.- 7. Models for Cavitation Reactors.- 7.1. Introduction.- 7.2. General Considerations for a Gas-Liquid Cavitation Reactor Model.- 7.3. Modeling a Batch Gas-Liquid Acoustic Reactor.- 7.4. Characterization of the Reaction Zone.- 7.5. Reactor Design and Scaleup based on the Concept of Cavitation Yield.- 7.6. Memory Effect in a Loop Cavitation Reactor.- 7.7. Concluding Remarks.- 8. Energy Efficiency and the Economics of the Cavitation Conversion Process.- 8.1. Introduction.- 8.2. Efficiency of Energy Transformation.- 8.3. Economics of Cavitation Conversion Processes.- 8.4. Concluding Remarks.- 9. CAV-OX Process.- 9.1. Introduction.- 9.2. Description of Process.- 9.3. Process Economics.- 9.4. Case Studies.- Nomenclature.- References.

最近チェックした商品