Noisy Optimization with Evolution Strategies (Genetic Algorithms and Evolutionary Computation)

個数:

Noisy Optimization with Evolution Strategies (Genetic Algorithms and Evolutionary Computation)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 158 p.
  • 言語 ENG
  • 商品コード 9781461353973
  • DDC分類 006

Full Description

Noise is a common factor in most real-world optimization problems. Sources of noise can include physical measurement limitations, stochastic simulation models, incomplete sampling of large spaces, and human-computer interaction. Evolutionary algorithms are general, nature-inspired heuristics for numerical search and optimization that are frequently observed to be particularly robust with regard to the effects of noise.

Noisy Optimization with Evolution Strategies contributes to the understanding of evolutionary optimization in the presence of noise by investigating the performance of evolution strategies, a type of evolutionary algorithm frequently employed for solving real-valued optimization problems. By considering simple noisy environments, results are obtained that describe how the performance of the strategies scales with both parameters of the problem and of the strategies considered. Such scaling laws allow for comparisons of different strategy variants, for tuning evolution strategies for maximum performance, and they offer insights and an understanding of the behavior of the strategies that go beyond what can be learned from mere experimentation.

This first comprehensive work on noisy optimization with evolution strategies investigates the effects of systematic fitness overvaluation, the benefits of distributed populations, and the potential of genetic repair for optimization in the presence of noise. The relative robustness of evolution strategies is confirmed in a comparison with other direct search algorithms.

Noisy Optimization with Evolution Strategies is an invaluable resource for researchers and practitioners of evolutionary algorithms.

Contents

1. Introduction.- 2. Preliminaries.- 1 The Basic $$
({\mu \mathord{\left/
{\vphantom {\mu {\rho \mathop + \limits_, \lambda }}} \right.
\kern-\nulldelimiterspace} {\rho \mathop + \limits_, \lambda }}) - ES
$$.- 2 Mutation Strength Adaptation.- 3 Fitness Environments.- 4 Measuring Performance.- 5 Modeling the Sphere.- 3. The (1 + 1)-ES: Overvaluation.- 1 Overvaluation.- 2 Performance.- 3 Discussion.- 4. The (?,?)-ES: Distributed Populations.- 1 Modeling the Population.- 2 The Infinite Noise Limit.- 3 Finite Noise Strength.- 4 The Spherical Environment.- 5. The (?/?,?)-ES: Genetic Repair.- 1 Simple Performance Analysis.- 2 Improving the Accuracy.- 3 Cumulative Mutation Strength Adaptation.- 6. Comparing Approaches To Noisy Optimization.- 1 The Competitors.- 2 The Competition.- 7. Conclusions.- Appendices.- References.

最近チェックした商品