Scatter Search : Methodology and Implementations in C (Operations Research/computer Science Interfaces Series) (2003)

個数:

Scatter Search : Methodology and Implementations in C (Operations Research/computer Science Interfaces Series) (2003)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 291 p.
  • 言語 ENG
  • 商品コード 9781461350279
  • DDC分類 511

Full Description

The book Scatter Search by Manuel Laguna and Rafael Martí represents a long-awaited "missing link" in the literature of evolutionary methods. Scatter Search (SS)-together with its generalized form called Path Relinking-constitutes the only evolutionary approach that embraces a collection of principles from Tabu Search (TS), an approach popularly regarded to be divorced from evolutionary procedures. The TS perspective, which is responsible for introducing adaptive memory strategies into the metaheuristic literature (at purposeful level beyond simple inheritance mechanisms), may at first seem to be at odds with population-based approaches. Yet this perspective equips SS with a remarkably effective foundation for solving a wide range of practical problems. The successes documented by Scatter Search come not so much from the adoption of adaptive memory in the range of ways proposed in Tabu Search (except where, as often happens, SS is advantageously coupled with TS), but fromthe use of strategic ideas initially proposed for exploiting adaptive memory, which blend harmoniously with the structure of Scatter Search. From a historical perspective, the dedicated use of heuristic strategies both to guide the process of combining solutions and to enhance the quality of offspring has been heralded as a key innovation in evolutionary methods, giving rise to what are sometimes called "hybrid" (or "memetic") evolutionary procedures. The underlying processes have been introduced into the mainstream of evolutionary methods (such as genetic algorithms, for example) by a series of gradual steps beginning in the late 1980s.

Contents

1. Introduction.- 1. Historical Background.- 2. Basic Design.- 3. C Code Conventions.- 2. Tutorial:Unconstrained Nonlinear Optimization.- 1. Diversification Generation Method.- 2. Improvement Method.- 3. Reference Set Update Method.- 4. Subset Generation Method.- 5. Combination Method.- 6. Overall Procedure.- 7. Summary of C Functions.- 3. Tutorial:0-1 Knapsack Problems.- 1. Diversification Generation Method.- 2. Improvement Method.- 3. Reference Set Update Method.- 4. Subset Generation Method.- 5. Combination Method.- 6. Overall Procedure.- 7. Summary of C Functions.- 4. Tutorial:Linear Ordering Problem.- 1. The Linear Ordering Problem.- 2. Diversification Generation Method.- 3. Improvement Method.- 4. Reference Set Update Method.- 5. Combination Method.- 6. Summary of C Functions.- 5. Advanced Scatter Search Designs.- 1. Reference Set.- 2. Subset Generation.- 3. Specialized Combination Methods.- 4. Diversification Generation.- 6. Use of Memory in Scatter Search.- 1. Tabu Search.- 2.Explicit Memory.- 3. Attributive Memory.- 7. Connections with Other Population-Based Approaches.- 1. Genetic Algorithms.- 2. Path Relinking.- 3. Intensification and Diversification.- 8. Scatter Search Applications.- 1. Neural Network Training.- 2. Multi-Objective Bus Routing.- 3. Arc Crossing Minimization in Graphs.- 4. Maximum Clique.- 5. Graph Coloring.- 6. Periodic Vehicle Loading.- 7. Capacitated Multicommodity Network Design.- 8. Job-Shop Scheduling.- 9. Capacitated Chinese Postman Problem.- 10. Vehicle Routing.- 11. Binary Mixed Integer Programming.- 12. Iterated Re-start Procedures.- 13. Parallelization for the P-Median.- 14. OptQuest Application.- 9. Commercial Scatter Search Implementation.- 1. General OCL Design.- 2. Constraints and Requirements.- 3. OCL Functionality.- 4. Computational Experiments.- 5. Conclusions.- 6. Appendix.- 10. Experiences and Future Directions.- 1. Experiences and Findings.- 2. Multi-Objective Scatter Search.- 3. Maximum Diversity Problem.- 4. Implications for Future Developments.- References.

最近チェックした商品