Handbook of Randomized Computing : Volume I/II (Combinatorial Optimization)

個数:

Handbook of Randomized Computing : Volume I/II (Combinatorial Optimization)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 996 p.
  • 言語 ENG
  • 商品コード 9781461348863
  • DDC分類 511

Full Description

The technique of randomization has been employed to solve numerous prob­ lems of computing both sequentially and in parallel. Examples of randomized algorithms that are asymptotically better than their deterministic counterparts in solving various fundamental problems abound. Randomized algorithms have the advantages of simplicity and better performance both in theory and often is a collection of articles written by renowned experts in practice. This book in the area of randomized parallel computing. A brief introduction to randomized algorithms In the analysis of algorithms, at least three different measures of performance can be used: the best case, the worst case, and the average case. Often, the average case run time of an algorithm is much smaller than the worst case. 2 For instance, the worst case run time of Hoare's quicksort is O(n ), whereas its average case run time is only O(nlogn). The average case analysis is conducted with an assumption on the input space. The assumption made to arrive at the O(n logn) average run time for quicksort is that each input permutation is equally likely. Clearly, any average case analysis is only as good as how valid the assumption made on the input space is. Randomized algorithms achieve superior performances without making any assumptions on the inputs by making coin flips within the algorithm. Any analysis done of randomized algorithms will be valid for all possible inputs.

Contents

Preface. Contributing Authors. Volume I. 1. Random Sampling: Sorting and Selection; D. Krizanc, S. Rajasekaran. 2. Simplified Analysis of Randomized Algorithms for Searching, Sorting, and Selection; M.T. Goodrich, R. Tamassia. 3. Concentration of Measure for Randomized Algorithms: Techniques and Analysis; D. Dubhashi, S. Sen. 4. Randomization in Graph Optimization Problems: A Survey; D.R. Karger. 5. The Delay Sequence Argument; A. Ranade. 6. Randomized Algorithms for Geometric Optimization Problems; P.K. Agarwal, S. Sen. 7. Randomized Geometry Algorithms for Coarse Grained Parallel Computers; Xiaotie Deng. 8. A Randomized Approach to Robot Path Planning Based on Lazy Evaluation; R. Bohlin, L.E. Kavraki. 9. The Power of Two Random Choices: A Survey of Techniques and Results; M. Mitzenmacher, A.W. Richa, R. Sitaraman. 10. Randomized Techniques for Modelling Faults and Achieving Robust Computing; S.E. Nikoletseas, P.G. Spirakis. 11. Randomized Communication in Radio Networks; B.S. Chlebus. Index. Preface. Contributing Authors. Volume II. 12. A Guide to Concentration Bounds; J. Díaz, J. Petit, M. Serna. 13. Bounded Error Probabilistic Finite State Automata; A. Condon. 14. Communication Protocols - An Exemplary Study of the Power of Randomness; J. Hromkovic. 15. Property Testing; D. Ron. 16. The Random Projection Method; S. Vempala. 17. Error Estimates for Indirect Measurements: Randomized vs. Deterministic Algorithms for `Black-Box' Programs; V.Kreinovich, R. Trejo. 18. Derandomization in Combinatorial Optimization; A. Srivastav. 19. Derandomizing Complexity Classes; P.B. Miltersen. Index.

最近チェックした商品