Interior Point Methods of Mathematical Programming (Applied Optimization) (Reprint)

個数:

Interior Point Methods of Mathematical Programming (Applied Optimization) (Reprint)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 556 p.
  • 言語 ENG
  • 商品コード 9781461334514
  • DDC分類 511

Full Description

One has to make everything as simple as possible but, never more simple. Albert Einstein Discovery consists of seeing what every­ body has seen and thinking what nobody has thought. Albert S. ent_Gyorgy; The primary goal of this book is to provide an introduction to the theory of Interior Point Methods (IPMs) in Mathematical Programming. At the same time, we try to present a quick overview of the impact of extensions of IPMs on smooth nonlinear optimization and to demonstrate the potential of IPMs for solving difficult practical problems. The Simplex Method has dominated the theory and practice of mathematical pro­ gramming since 1947 when Dantzig discovered it. In the fifties and sixties several attempts were made to develop alternative solution methods. At that time the prin­ cipal base of interior point methods was also developed, for example in the work of Frisch (1955), Caroll (1961), Huard (1967), Fiacco and McCormick (1968) and Dikin (1967). In 1972 Klee and Minty made explicit that in the worst case some variants of the simplex method may require an exponential amount of work to solve Linear Programming (LP) problems. This was at the time when complexity theory became a topic of great interest. People started to classify mathematical programming prob­ lems as efficiently (in polynomial time) solvable and as difficult (NP-hard) problems. For a while it remained open whether LP was solvable in polynomial time or not. The break-through resolution ofthis problem was obtained by Khachijan (1989).

Contents

I Linear Programming.- 1 Introduction to the Theory of Interior Point Methods.- 2 Affine Scaling Algorithm.- 3 Target-Following Methods for Linear Programming.- 4 Potential Reduction Algorithms.- 5 Infeasible-Interior-Point Algorithms.- 6 Implementation of Interior-Point Methods for Large Scale Linear Programs.- II Convex Programming.- 7 Interior-Point Methods for Classes of Convex Programs.- 8 Complementarity Problems.- 9 Semidefinite Programming.- 10 Implementing Barrier Methods for Nonlinear Programming.- III Applications, Extensions.- 11 Interior point Methods for Combinatorial Optimization.- 12 Interior Point Methods for Global Optimization.- 13 Interior Point Approaches for the VLSI Placement Problem.

最近チェックした商品