Fundamentals of the Theory of Groups (Graduate Texts in Mathematics)

個数:

Fundamentals of the Theory of Groups (Graduate Texts in Mathematics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 203 p.
  • 言語 ENG
  • 商品コード 9781461299660
  • DDC分類 512

Full Description

The present edition differs from the first in several places. In particular our treatment of polycyclic and locally polycyclic groups-the most natural generalizations of the classical concept of a finite soluble group-has been expanded. We thank Ju. M. Gorcakov, V. A. Curkin and V. P. Sunkov for many useful remarks. The Authors Novosibirsk, Akademgorodok, January 14, 1976. v Preface to the First Edition This book consists of notes from lectures given by the authors at Novosi­ birsk University from 1968 to 1970. Our intention was to set forth just the fundamentals of group theory, avoiding excessive detail and skirting the quagmire of generalizations (however a few generalizations are nonetheless considered-see the last sections of Chapters 6 and 7). We hope that the student desiring to work in the theory of groups, having become acquainted with its fundamentals from these notes, will quickly be able to proceed to the specialist literature on his chosen topic. We have striven not to cross the boundary between abstract and scholastic group theory, elucidating difficult concepts by means of simple examples wherever possible. Four types of examples accompany the theory: numbers under addition, numbers under multiplication, permutations, and matrices.

Contents

1 Definition and Most Important Subsets of a Group.- 1. Definition of a Group.- 2. Subgroups. Normal Subgroups.- 3. The Center. The Commutator Subgroup.- 2 Homorphisms.- 4. Homomorphisms and Factors.- 5. Endomorphisms. Automorphisms.- 6. Extensions by Means of Automorphisms.- 3 Abelian Groups.- 7. Free Abelian Groups. Rank.- 8. Finitely Generated Abelian Groups.- 9. Divisible Abelian Groups.- 10. Periodic Abelian Groups.- 4 Finite Groups.- 11. Sylow p-Subgroups.- 12. Finite Simple Groups.- 13. Permutation Groups.- 5 Free Groups and Varieties.- 14. Free Groups.- 15. Varieties.- 6 Nilpotent Groups.- 16. General Properties and Examples.- 17. The Most Important Subclasses.- 18. Generalizations of Nilpotency.- 7 Soluble Groups.- 19. General Properties and Examples.- 20. Finite Soluble Groups.- 21. Soluble Matrix Groups.- 22. Generalizations of Solubility.- Append.- Auxiliary Results from Algebra, Logic and Number Theory.- 23. On Nilpotent Algebras.- 23.1. Nilpotence of Associative and Lie Algebras.- 23.2. Non-Nilpotent Nilalgebras.- 24. Local Theorems of Logic.- 24.1. Algebraic Systems.- 24.2. The Language of the Predicate Calculus.- 24.3. The Local Theorems.- 25. On Algebraic Integers.- Index of Notations for Classical Objects.

最近チェックした商品