Error-Free Polynomial Matrix Computations (Monographs in Computer Science) (Reprint)

個数:

Error-Free Polynomial Matrix Computations (Monographs in Computer Science) (Reprint)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 言語 ENG
  • 商品コード 9781461295723
  • DDC分類 513

Full Description

This book is written as an introduction to polynomial matrix computa­ tions. It is a companion volume to an earlier book on Methods and Applications of Error-Free Computation by R. T. Gregory and myself, published by Springer-Verlag, New York, 1984. This book is intended for seniors and graduate students in computer and system sciences, and mathematics, and for researchers in the fields of computer science, numerical analysis, systems theory, and computer algebra. Chapter I introduces the basic concepts of abstract algebra, including power series and polynomials. This chapter is essentially meant for bridging the gap between the abstract algebra and polynomial matrix computations. Chapter II is concerned with the evaluation and interpolation of polynomials. The use of these techniques for exact inversion of poly­ nomial matrices is explained in the light of currently available error-free computation methods. In Chapter III, the principles and practice of Fourier evaluation and interpolation are described. In particular, the application of error-free discrete Fourier transforms for polynomial matrix computations is consi­ dered.

Contents

I Algebraic Concepts.- 1 Introduction.- 2 Groups, Rings, Integral Domains, and Fields.- 3 Power Series and Polynomials.- 4 Chinese Remainder Theorem and Interpolation.- 5 Polynomials in Several Variables.- II Polynomial Matrix—Evaluation, Interpolation, Inversion.- 1 Introduction.- 2 Results from Matrix Theory.- 3 Matrix Method—Evaluation and Interpolation of Single Variable Polynomials.- 4 Tensor Product Method—Evaluation and Interpolation of Multi-variable Polynomials.- III Fourier Evaluation and Interpolation.- 1 Introduction.- 2 Discrete Fourier Transform over a Ring.- 3 Convolution.- 4 Error-Free DFT.- 5 Polynomial Evaluation—Interpolation—Multiplication.- 6 Multivariable Polynomial Interpolation.- IV Polynomial Hensel Codes.- 1 Introduction.- 2 Hensel Fields.- 3 Isomorphic Algebras.- 4 Hensel Codes for Rational Polynomials.- 5 Arithmetic of Hensel Codes.- 6 Forward and Inverse Mapping Algorithms.- 7 Direct Solution of Linear Systems and Matrix Inversion.- 8 Hensel—Newton—Schultz Iterative Matrix Inversion.- V Matrix Computations—Euclidean and Non-Euclidean Domains.- 1 Introduction.- 2 Matrices over Euclidean Domains.- 3 Matrices over Non-Euclidean Domains.- 4 Multivariable Polynomial Hensel Codes.

最近チェックした商品