Integral Transformations, Operational Calculus, and Generalized Functions (Mathematics and Its Applications)

個数:
  • ポイントキャンペーン

Integral Transformations, Operational Calculus, and Generalized Functions (Mathematics and Its Applications)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 240 p.
  • 言語 ENG
  • 商品コード 9781461285489
  • DDC分類 515

Full Description

It is not the object of the author to present comprehensive cov­ erage of any particular integral transformation or of any particular development of generalized functions, for there are books available in which this is done. Rather, this consists more of an introductory survey in which various ideas are explored. The Laplace transforma­ tion is taken as the model type of an integral transformation and a number of its properties are developed; later, the Fourier transfor­ mation is introduced. The operational calculus of Mikusinski is pre­ sented as a method of introducing generalized functions associated with the Laplace transformation. The construction is analogous to the construction of the rational numbers from the integers. Further on, generalized functions associated with the problem of extension of the Fourier transformation are introduced. This construction is anal­ ogous to the construction of the reals from the rationals by means of Cauchy sequences. A chapter with sections on a variety of trans­ formations is adjoined. Necessary levels of sophistication start low in the first chapter, but they grow considerably in some sections of later chapters. Background needs are stated at the beginnings of each chapter. Many theorems are given without proofs, which seems appro­ priate for the goals in mind. A selection of references is included. Without showing many of the details of rigor it is hoped that a strong indication is given that a firm mathematical foundation does actu­ ally exist for such entities as the "Dirac delta-function".

Contents

Preface. 1. Laplace Transformations. 2. Mikusinski Operators. 3. Fourier Transformations. 4. Generalized Functions. 5. Other Transformations. References. Appendices: A. The Titchmarsh Theorem. B. Inversion Integrals. C. Interchange of Order of Infinite Processes. D. Definitions and Properties of Some Special Functions. Tables of Transforms: 1. Laplace. 2. Inverse Laplace. 3. Fourier. 4. Fourier Cosine. 5. Fourier Sine. 6. Mellin. 7. Power Series. 8. Finite Fourier. 9. Finite Fourier Cosine. 10. Finite Fourier Sine. 11. Finite Laplace. 12. Two-Dimensional Laplace. 13. Inverse Two-Dimensional Laplace. Index.

最近チェックした商品