Hysteresis and Phase Transitions (Applied Mathematical Sciences) (Reprint)

個数:

Hysteresis and Phase Transitions (Applied Mathematical Sciences) (Reprint)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 382 p.
  • 言語 ENG
  • 商品コード 9781461284789
  • DDC分類 515

Full Description

Hysteresis is an exciting and mathematically challenging phenomenon that oc­ curs in rather different situations: jt, can be a byproduct offundamental physical mechanisms (such as phase transitions) or the consequence of a degradation or imperfection (like the play in a mechanical system), or it is built deliberately into a system in order to monitor its behaviour, as in the case of the heat control via thermostats. The delicate interplay between memory effects and the occurrence of hys­ teresis loops has the effect that hysteresis is a genuinely nonlinear phenomenon which is usually non-smooth and thus not easy to treat mathematically. Hence it was only in the early seventies that the group of Russian scientists around M. A. Krasnoselskii initiated a systematic mathematical investigation of the phenomenon of hysteresis which culminated in the fundamental monograph Krasnoselskii-Pokrovskii (1983). In the meantime, many mathematicians have contributed to the mathematical theory, and the important monographs of 1. Mayergoyz (1991) and A. Visintin (1994a) have appeared. We came into contact with the notion of hysteresis around the year 1980.

Contents

1. Some Mathematical Tools.- 1.1 Measure and Integration.- 1.2 Function Spaces.- 1.3 Nonlinear Equations.- 1.4 Ordinary Differential Equations.- 2. Hysteresis Operators.- 2.1 Basic Examples.- 2.2 General Hysteresis Operators.- 2.3 The Play Operator.- 2.4 Hysteresis Operators of Preisach Type.- 2.5 Hysteresis Potentials and Energy Dissipation.- 2.6 Hysteresis Counting and Damage.- 2.7 Characterization of Preisach Type Operators.- 2.8 Hysteresis Loops in the Prandtl Model.- 2.9 Hysteresis Loops in the Preisach Model.- 2.10 Composition of Preisach Type Operators.- 2.11 Inverse and Implicit Hysteresis Operators.- 2.12 Hysteresis Count and Damage, Part II.- 3. Hysteresis and Differential Equations.- 3.1 Hysteresis in Ordinary Differential Equations.- 3.2 Auxiliary Imbedding Results.- 3.3 The Heat Equation with Hysteresis.- 3.4 A Convexity Inequality.- 3.5 The Wave Equation with Hysteresis.- 4. Phase Transitions and Hysteresis.- 4.1 Thermodynamic Notions and Relations.- 4.2 Phase Transitions and Order Parameters.- 4.3 Landau and Devonshire Free Energies.- 4.4 Ginzburg Theory and Phase Field Models.- 5. Hysteresis Effects in Shape Memory Alloys.- 5.1 Phenomenology and Falk's Model.- 5.2 Well-Posedness for Falk's Model.- 5.3 Numerical Approximation.- 5.4 Complementary Remarks.- 6. Phase Field Models With Non-Conserving Kinetics.- 6.1 Auxiliary Results from Linear Elliptic and Parabolic Theory.- 6.2 Well-Posedness of the Caginalp Model.- 6.3 Well-Posedness of the Penrose-Fife Model.- 6.4 Complementary Remarks.- 7. Phase Field Models With Conserved Order Parameters.- 7.1 Well-Posedness of the Caginalp Model.- 7.2 Well-Posedness of the Penrose-Fife Model.- 8. Phase Transitions in Eutectoid Carbon Steels.- 8.1 Phenomenology of the Phase Transitions.- 8.2 The MathematicalModel.- 8.3 Well-Posedness of the Model.- 8.4 The Jominy Test: A Numerical Study.

最近チェックした商品