Predicting Recidivism Using Survival Models (Research in Criminology) (Reprint)

個数:

Predicting Recidivism Using Survival Models (Research in Criminology) (Reprint)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 185 p.
  • 言語 ENG
  • 商品コード 9781461283430
  • DDC分類 310

Full Description

Our interest in the statistical modeling of data on the timing of recidivism began in the mid 1970s when we were both junior members of the eco­ nomics department at the University of North Carolina. At that time, methods of analyzing qualitative and limited variables were being developed rapidly in the econometric literature, and we became interested in finding a suitable application for these new methods. Data on the timing of recidivism offered unique and interesting statistical challenges, such as skewness of the distribution and the presence of censoring. Being young and foolish, we decided it would be fun to try something "really" difficult. And, being young and ignorant, we were blissfully unaware of the con­ current developments in the statistical modeling of survival times that were then appearing in the biostatistics, operations research, and criminological literatures. In the course of some earlier research, we had learned that the North Carolina Department of Correction had an unusually well-developed data base on their inmates. We approached the Department and asked if they would be interested in working with us to develop models that would predict when their former charges would return to their custody. They agreed because they were interested in using such models to evaluate rehabilitative programs and alternative prison management systems and to help project future prison populations.

Contents

1 Introduction.- Overview.- Prediction in Criminology.- Ethical Issues.- What Sample Should Be Used to Estimate the Model?.- Selection of a Criterion Variable.- Use and Selection of Explanatory Variables.- Selection of a Statistical Model.- What Are Realistic Goals for Prediction?.- The Career Criminal Paradigm.- Previous Use of Survival Analysis in Justice Research.- Preview of Coming Attractions.- 2 Data.- The Nature of the Data.- Definitions of Variables.- Comparisons of Subsamples.- 3 Survey of Statistical Methodology.- Survival Time Models.- Estimation of Survival Time Models.- Predictions Using Survival Time Models.- 4 Simple Models.- Nonparametric Prediction.- The Exponential Distribution.- The Lognormal Model.- The Log-Logistic Model.- The Weibull Model.- The LaGuerre Model.- Conclusions.- 5 Split Population Models.- The Split Exponential Model.- The Split Lognormal Model.- The Split Log-Logistic Model.- The Split Weibull Model.- The Split LaGuerre Model.- Conclusions.- 6 The Proportional Hazards Model.- The Model and Its Estimation.- Results of Estimation.- Predictions From the Proportional Hazards Model.- Conclusions.- 7 Parametric Models With Explanatory Variables.- Models Based on the Exponential Distribution.- Results for Exponential Models.- Predictions From Exponential Models.- Models Based on the Lognormal Distribution.- Results for Lognormal Models.- Predictions From Lognormal Models.- A Model Based on the LaGuerre Distribution.- Conclusions.- 8 Predictions for Nonrandom Samples and for Individuals.- Predictions Across Release Cohorts.- Subsample Predictions.- Individual Predictions.- Conclusions.- 9 Summary and Conclusions.- Summary.- Conclusions.- References.- Author Index.

最近チェックした商品