Mathematical Foundations of Computer Science : Sets, Relations, and Induction (Monographs in Computer Science) (Reprint)

個数:

Mathematical Foundations of Computer Science : Sets, Relations, and Induction (Monographs in Computer Science) (Reprint)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 435 p.
  • 言語 ENG
  • 商品コード 9781461277927
  • DDC分類 511

Full Description

Mathematical Foundations of Computer Science, Volume I is the first of two volumes presenting topics from mathematics (mostly discrete mathematics) which have proven relevant and useful to computer science. This volume treats basic topics, mostly of a set-theoretical nature (sets, functions and relations, partially ordered sets, induction, enumerability, and diagonalization) and illustrates the usefulness of mathematical ideas by presenting applications to computer science. Readers will find useful applications in algorithms, databases, semantics of programming languages, formal languages, theory of computation, and program verification. The material is treated in a straightforward, systematic, and rigorous manner. The volume is organized by mathematical area, making the material easily accessible to the upper-undergraduate students in mathematics as well as in computer science and each chapter contains a large number of exercises. The volume can be used as a textbook, but it will also be useful to researchers and professionals who want a thorough presentation of the mathematical tools they need in a single source. In addition, the book can be used effectively as supplementary reading material in computer science courses, particularly those courses which involve the semantics of programming languages, formal languages and automata, and logic programming.

Contents

1 Elementary Set Theory.- 1.1 Introduction.- 1.2 Sets, Members, Subsets.- 1.3 Building New Sets.- 1.4 Exercises and Supplements.- 1.5 Bibliographical Comments.- 2 Relations and Functions.- 2.1 Introduction.- 2.2 Relations.- 2.3 Functions.- 2.4 Sequences, Words, and Matrices.- 2.5 Images of Sets Under Relations.- 2.6 Relations and Directed Graphs.- 2.7 Special Classes of Relations.- 2.8 Equivalences and Partitions.- 2.9 General Cartesian Products.- 2.10 Operations.- 2.11 Representations of Relations and Graphs.- 2.12 Relations and Databases.- 2.13 Exercises and Supplements.- 2.14 Bibliographical Comments.- 3 Partially Ordered Sets.- 3.1 Introduction.- 3.2 Partial Orders and Hasse Diagrams.- 3.3 Special Elements of Partially Ordered Sets.- 3.4 Chains.- 3.5 Duality.- 3.6 Constructing New Posets.- 3.7 Functions and Posets.- 3.8 Complete Partial Orders.- 3.9 The Axiom of Choice and Zorn's Lemma.- 3.10 Exercises and Supplements.- 3.11 Bibliographical Comments.- 4 Induction.- 4.1 Introduction.- 4.2 Induction on the Natural Numbers.- 4.3 Inductively Defined Sets.- 4.4 Proof by Structural Induction.- 4.5 Recursive Definitions of Functions.- 4.6 Constructors.- 4.7 Simultaneous Inductive Definitions.- 4.8 Propositional Logic.- 4.9 Primitive Recursive and Partial Recursive Functions.- 4.10 Grammars.- 4.11 Peano's Axioms.- 4.12 Well-Founded Sets and Induction.- 4.13 Fixed Points and Fixed Point Induction.- 4.14 Exercises and Supplements.- 4.15 Bibliographical Comments.- 5 Enumerability and Diagonalization.- 5.1 Introduction.- 5.2 Equinumerous Sets.- 5.3 Countable and Uncountable Sets.- 5.4 Enumerating Programs.- 5.5 Abstract Families of Functions.- 5.6 Exercises and Supplements.- 5.7 Bibliographical Comments.- References.

最近チェックした商品