Control and Chaos (Mathematical Modeling)

個数:

Control and Chaos (Mathematical Modeling)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 342 p.
  • 言語 ENG
  • 商品コード 9781461275404
  • DDC分類 003

Full Description

This volume contains the proceedings of the US-Australia workshop on Control and Chaos held in Honolulu, Hawaii from 29 June to 1 July, 1995. The workshop was jointly sponsored by the National Science Foundation (USA) and the Department of Industry, Science and Technology (Australia) under the US-Australia agreement. Control and Chaos-it brings back memories of the endless reruns of "Get Smart" where the good guys worked for Control and the bad guys were associated with Chaos. In keeping with current events, Control and Chaos are no longer adversaries but are now working together. In fact, bringing together workers in the two areas was the focus of the workshop. The objective of the workshop was to bring together experts in dynamical systems theory and control theory, and applications workers in both fields, to focus on the problem of controlling nonlinear and potentially chaotic systems using limited control effort. This involves finding and using orbits in nonlinear systems which can take a system from one region of state space to other regions where we wish to stabilize the system. Control is used to generate useful chaotic trajectories where they do not exist, and to identify and take advantage of useful ones where they do exist. A controller must be able to nudge a system into a proper chaotic orbit and know when to come off that orbit. Also, it must be able to identify regions of state space where feedback control will be effective.

Contents

Understanding Complex Dynamics.- Triangulating Noisy Dynamical Systems.- Attractor Reconstruction and Control Using Interspike Intervals.- Modeling Chaos from Experimental Data.- Chaos in Symplectic Discretizations of the Pendulum and Sine-Gordon Equations.- Collapsing Effects in Computation of Dynamical Systems.- Bifurcations in the Falkner-Skan equation.- Some Characterisations of Low-dimensional Dynamical Systems with Time-reversal Symmetry.- Controlling Complex Systems.- Control of Chaos by Means of Embedded Unstable Periodic Orbits.- Notch Filter Feedback Control for k-Period Motion in a Chaotic System.- Targeting and Control of Chaos.- Adaptive Nonlinear Control: A Lyapunov Approach.- Creating and Targeting Periodic Orbits.- Dynamical Systems, Optimization, and Chaos.- Combined Controls for Noisy Chaotic Systems.- Complex Dynamics in Adaptive Systems.- Hitting Times to a Target for the Baker's Map.- Applications.- Controllable Targets Near a Chaotic Attractor.- The Dynamics of Evolutionary Stable Strategies.- Nitrogen Cycling and the Control of Chaos in a Boreal Forest Model.- Self-organization Dynamics in Chaotic Neural Networks.

最近チェックした商品