Topics in Geometry : In Memory of Joseph D'Atri (Progress in Nonlinear Differential Equations and Their Applications)

個数:

Topics in Geometry : In Memory of Joseph D'Atri (Progress in Nonlinear Differential Equations and Their Applications)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 370 p.
  • 言語 ENG
  • 商品コード 9781461275343
  • DDC分類 516

Full Description

This collection of articles serves to commemorate the legacy of Joseph D'Atri, who passed away on April 29, 1993, a few days after his 55th birthday. Joe D' Atri is credited with several fundamental discoveries in ge­ ometry. In the beginning of his mathematical career, Joe was interested in the generalization of symmetrical spaces in the E. Cart an sense. Symmetric spaces, differentiated from other homogeneous manifolds by their geomet­ rical richness, allows the development of a deep analysis. Geometers have been constantly interested and challenged by the problem of extending the class of symmetric spaces so as to preserve their geometrical and analytical abundance. The name of D'Atri is tied to one of the most successful gen­ eralizations: Riemann manifolds in which (local) geodesic symmetries are volume-preserving (up to sign). In time, it turned out that the majority of interesting generalizations of symmetrical spaces are D'Atri spaces: natu­ ral reductive homogeneous spaces, Riemann manifolds whose geodesics are orbits of one-parameter subgroups, etc. The central place in D'Atri's research is occupied by homogeneous bounded domains in en, which are not symmetric. Such domains were discovered by Piatetskii-Shapiro in 1959, and given Joe's strong interest in the generalization of symmetric spaces, it was very natural for him to direct his research along this path.

Contents

Non-Linear Elliptic Equations on Riemannian Manifolds with the Sobolev Critical Exponent.- Symmetric Cones.- Pseudo-Hermitian Symmetric Spaces of Tube Type.- Homogeneous Riemannian Manifolds Whose Geodesics Are Orbits.- On the D-Module and Formal-Variable Approaches to Vertex Algebras.- The Lowest Eigenvalue for Congruence Groups.- Signatures of Roots and a New Characterization of Causal Symmetric Spaces.- Admissible Limit Sets of Discrete Groups on Symmetric Spaces of Rank One.- D'Atri Spaces.- Multiple Point Blowup Phenomenon in Scalar Curvature Equations on Spheres ofDimension Greater Than Three.- The Harish-Chandra Realization for Non-Symmetric Domains in ?n.- How many Lorentz Surfaces Are There?.- On a Theorem of Milnor and Thom.- Riemannian Exponential Maps and Decompositions of Reductive Lie Groups.- Weakly Symmetric Spaces.

最近チェックした商品