A Stability Technique for Evolution Partial Differential Equations : A Dynamical Systems Approach (Progress in Nonlinear Differential Equations and Their Applications)

個数:

A Stability Technique for Evolution Partial Differential Equations : A Dynamical Systems Approach (Progress in Nonlinear Differential Equations and Their Applications)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 377 p.
  • 言語 ENG
  • 商品コード 9781461273967
  • DDC分類 515

Full Description

common feature is that these evolution problems can be formulated as asymptoti­ cally small perturbations of certain dynamical systems with better-known behaviour. Now, it usually happens that the perturbation is small in a very weak sense, hence the difficulty (or impossibility) of applying more classical techniques. Though the method originated with the analysis of critical behaviour for evolu­ tion PDEs, in its abstract formulation it deals with a nonautonomous abstract differ­ ential equation (NDE) (1) Ut = A(u) + C(u, t), t > 0, where u has values in a Banach space, like an LP space, A is an autonomous (time-independent) operator and C is an asymptotically small perturbation, so that C(u(t), t) ‾ o as t ‾ 00 along orbits {u(t)} of the evolution in a sense to be made precise, which in practice can be quite weak. We work in a situation in which the autonomous (limit) differential equation (ADE) Ut = A(u) (2) has a well-known asymptotic behaviour, and we want to prove that for large times the orbits of the original evolution problem converge to a certain class of limits of the autonomous equation. More precisely, we want to prove that the orbits of (NDE) are attracted by a certain limit set [2* of (ADE), which may consist of equilibria of the autonomous equation, or it can be a more complicated object.

Contents

Introduction: A Stability Approach and Nonlinear Models.- Stability Theorem: A Dynamical Systems Approach.- Nonlinear Heat Equations: Basic Models and Mathematical Techniques.- Equation of Superslow Diffusion.- Quasilinear Heat Equations with Absorption. The Critical Exponent.- Porous Medium Equation with Critical Strong Absorption.- The Fast Diffusion Equation with Critical Exponent.- The Porous Medium Equation in an Exterior Domain.- Blow-up Free-Boundary Patterns for the Navier-Stokes Equations.- The Equation ut = uxx + uln2u: Regional Blow-up.- Blow-up in Quasilinear Heat Equations Described by Hamilton-Jacobi Equations.- A Fully Nonlinear Equation from Detonation Theory.- Further Applications to Second- and Higher-Order Equations.- References.- Index.

最近チェックした商品