Physics of High-Density Z-Pinch Plasmas

個数:

Physics of High-Density Z-Pinch Plasmas

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 277 p.
  • 言語 ENG
  • 商品コード 9781461271383
  • DDC分類 539

Full Description

A "z-pinch" is a deceptively simple plasma configuration in which a longitudinal current produces a magnetic field that tends to confine the plasma. The simple geometry and low cost made it an early candidate for controlled fusion experiments. However, instabilities and rapid plasma loss motivated the development of more complicated plasma confinement systems such as tokamaks and stellarators. Recent experiments, in which z-pinches produced unprecedented levels of radiation and power, have led to renewed interest in the configuration. As a result, z-pinch research is currently one of the fastest growing areas of plasma physics, with revived interest in z-pinch controlled fusion reactors along with investigations of new z-pinch applications, such as, very high power x-ray sources, high-energy neutrons sources, and ultra-high magnetic fields generators. This book provides a comprehensive review of the physics of dense z-pinches. Although the thrust of the treatment is theoretical, the authors also discuss recent experimental results as well as the operating systems of the main types of electrical drivers.

Contents

1. Introduction.- 1.1. An historical perspective.- 1.2. Characteristics of modern Z-pinch systems.- 1.3. The various types of Z pinches.- 1.4. Pulsed-power drivers.- 2. Equilibria of Z-Pinch Plasmas.- 2.1. Steady-state equilibria of Z-pinch plasmas.- 2.2. Equilibria of radiating Z pinches.- 3. Dynamics of Z-Pinch Plasmas.- 3.1. Formation of Z-pinch plasmas: Theoretical modeling.- 3.2. Zero-dimensional models of dynamic Z pinches.- 3.3. Fluid models of Z-pinch plasmas.- 3.4. Self-similar dynamics of an ideal MHD Z pinch.- 3.5. Self-similar solutions for time-dependent Z-pinch equilibria.- 4. Stability of Z-Pinch Plasmas.- 4.1. The stability of steady-state Z pinches.- 4.2. Effect of ohmic heating and radiative losses: Overheating instability and filamentation.- 4.3. Resistive and viscous effects on Z-pinch stability: Heat conductivity.- 4.4. Effects of finite and large ion Larmor radius: The Hall effect.- 4.5. Kinetic effects.- 4.6. Nonlinear evolution of the m = 0 mode.- 5. Rayleigh—Taylor Instability of a Plasma Accelerated by Magnetic Pressure.- 5.1. Rayleigh—Taylor instabilities of dynamic plasmas.- 5.2. Ideal MHD model: The Rayleigh—Taylor instability modes.- 5.3. Ideal MHD model: Effects of plasma compressibility and magnetic shear.- 5.4. Effect of magnetic shear.- 5.5. Dissipative effects.- 5.6. Large Larmor-radius effects.- 5.7. Nonlinear evolution of the Rayleigh—Taylor instability.- 6. Stability of Dynamic Z-Pinches and Liners.- 6.1. The thin-shell model.- 6.2. Growth of the RT instabilities in a layer of finite thickness.- 6.3. Rayleigh—Taylor instabilities in an imploding Z pinch: The snowplow model.- 6.4. Imploding wire arrays.- 6.5. Ideal MHD model.- 6.6. Stability of gas-puff Z-pinch implosions.- 6.7. Stabilization of long-wavelength sausage andkink modes of a Z pinch by radial oscillations.- 6.9. Two-dimensional simulation of magnetically driven.- Rayleigh—Taylor instabilities in cylindrical Z pinches.- 7. Applications of Z Pinches.- 7.1. Controlled nuclear fusion.- 7.2. Z pinches as sources of x-ray and neutron radiation.- 7.3. X-ray laser.- 7.4. Production of ultrahigh pulsed-magnetic fields.- 7.5. Focusing high-energy particles in an accelerator.- Conclusions.- References.

最近チェックした商品