Approximation Theory : Moduli of Continuity and Global Smoothness Preservation

個数:

Approximation Theory : Moduli of Continuity and Global Smoothness Preservation

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 525 p.
  • 言語 ENG
  • 商品コード 9781461271123
  • DDC分類 511

Full Description

We study in Part I of this monograph the computational aspect of almost all moduli of continuity over wide classes of functions exploiting some of their convexity properties. To our knowledge it is the first time the entire calculus of moduli of smoothness has been included in a book. We then present numerous applications of Approximation Theory, giving exact val­ ues of errors in explicit forms. The K-functional method is systematically avoided since it produces nonexplicit constants. All other related books so far have allocated very little space to the computational aspect of moduli of smoothness. In Part II, we study/examine the Global Smoothness Preservation Prop­ erty (GSPP) for almost all known linear approximation operators of ap­ proximation theory including: trigonometric operators and algebraic in­ terpolation operators of Lagrange, Hermite-Fejer and Shepard type, also operators of stochastic type, convolution type, wavelet type integral opera­ tors and singular integral operators, etc. We present also a sufficient general theory for GSPP to hold true. We provide a great variety of applications of GSPP to Approximation Theory and many other fields of mathemat­ ics such as Functional analysis, and outside of mathematics, fields such as computer-aided geometric design (CAGD). Most of the time GSPP meth­ ods are optimal. Various moduli of smoothness are intensively involved in Part II. Therefore, methods from Part I can be used to calculate exactly the error of global smoothness preservation. It is the first time in the literature that a book has studied GSPP.

Contents

1 Introduction.- 1.1 On Chapter 2: Uniform Moduli of Smoothness.- 1.2 On Chapter 3: LP-Moduli of Smoothness, 1 ?pTrigonometric Operators.- 6 Global Smoothness Preservation by Algebraic Interpolation Operators.- 7 Global Smoothness Preservation by General Operators.- 8 Global Smoothness Preservation by Multivariate Operators.- 9 Stochastic Global Smoothness Preservation.- 10 Shift Invariant Univariate Integral Operators.- 11 Shift Invariant Multivariate Integral Operators.- 12 Differentiated Shift Invariant Univariate Integral Operators.- 13 Differentiated Shift Invariant Multivariate Integral Operators.- 14 Generalized Shift Invariant Univariate Integral Operators.- 15 Generalized Shift Invariant Multivariate Integral Operators.- 16 General Theory of Global Smoothness Preservation by Univariate Singular Operators.- 17 General Theory of Global Smoothness Preservation by Multivariate Singular Operators.- 18 Gonska Progress in Global Smoothness Preservation.- 19 Miscellaneous Progress in Global Smoothness Preservation.- 20 Other Applications of the Global Smoothness Preservation Property.- References.- List of Symbols.

最近チェックした商品