The Statistical Analysis of Discrete Data (Springer Texts in Statistics)

個数:

The Statistical Analysis of Discrete Data (Springer Texts in Statistics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 372 p.
  • 言語 ENG
  • 商品コード 9781461269861
  • DDC分類 310

Full Description

The Statistical Analysis of Discrete Data provides an introduction to cur­ rent statistical methods for analyzing discrete response data. The book can be used as a course text for graduate students and as a reference for researchers who analyze discrete data. The book's mathematical prereq­ uisites are linear algebra and elementary advanced calculus. It assumes a basic statistics course which includes some decision theory, and knowledge of classical linear model theory for continuous response data. Problems are provided at the end of each chapter to give the reader an opportunity to ap­ ply the methods in the text, to explore extensions of the material covered, and to analyze data with discrete responses. In the text examples, and in the problems, we have sought to include interesting data sets from a wide variety of fields including political science, medicine, nuclear engineering, sociology, ecology, cancer research, library science, and biology. Although there are several texts available on discrete data analysis, we felt there was a need for a book which incorporated some of the myriad recent research advances. Our motivation was to introduce the subject by emphasizing its ties to the well-known theories of linear models, experi­ mental design, and regression diagnostics, as well as to describe alterna­ tive methodologies (Bayesian, smoothing, etc. ); the latter are based on the premise that external information is available. These overriding goals, to­ gether with our own experiences and biases, have governed our choice of topics.

Contents

1 Introduction.- 2 Univariate Discrete Responses.- 3 Loglinear Models.- 4 Cross-Classified Data.- 5 Univariate Discrete Data with Covariates.- Appendix 1. Some Results from Linear Algebra.- Appendix 2. Maximization of Concave Functions.- Appendix 3. Proof of Proposition 3.3.1 (ii) and (iii).- Appendix 4. Elements of Large Sample Theory.- Problems.- References.- List of Notation.- Index to Data Sets.- Author Index.

最近チェックした商品