Caught by Disorder : Bound States in Random Media (Progress in Mathematical Physics)

個数:

Caught by Disorder : Bound States in Random Media (Progress in Mathematical Physics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 166 p.
  • 言語 ENG
  • 商品コード 9781461266440
  • DDC分類 515

Full Description

Disorder is one of the predominant topics in science today. The present text is devoted to the mathematical studyofsome particular cases ofdisordered systems. It deals with waves in disordered media. To understand the significance of the influence of disorder, let us start by describing the propagation of waves in a sufficiently ordered or regular environment. That they do in fact propagate is a basic experience that is verified by our senses; we hear sound (acoustic waves) see (electromagnetic waves) and use the fact that electromagnetic waves travel long distances in many aspects ofour daily lives. The discovery that disorder can suppress the transport properties of a medium is oneof the fundamental findings of physics. In its most prominent practical application, the semiconductor, it has revolutionized the technical progress in the past century. A lot of what we see in the world today depends on that relatively young device. The basic phenomenon of wave propagation in disordered media is called a metal-insulator transition: a disordered medium can exhibit good transport prop­ erties for waves ofrelatively high energy (like a metal) and suppress the propaga­ tion of waves of low energy (like an insulator). Here we are actually talking about quantum mechanical wave functions that are used to describe electronic transport properties. To give an initial idea of why such a phenomenon could occur, we have to recall that in physical theories waves are represented by solutions to certain partial differential equations. These equations link time derivatives to spatial derivatives.

Contents

1 Getting Started.- Prologue.- 1.1 Bound states versus extended states.- 1.2 Ergodic operator families.- 1.3 Some important examples.- 1.4 Our basic models (P+A) and (DIV).- 1.5 Localization and Lifshitz tails: the heuristic picture.- 2 Analysis of Anderson-type Models.- Prologue.- 2.1 Lifshitz tails for (P+A).- 2.2 Initial length scale estimates.- 2.3 Wegner estimates.- 2.4 Combes—Thomas estimates.- 2.5 Changing cubes.- 3 Multiscale Analysis.- Prologue.- 3.1 Idea of the proof and historical notes.- 3.2 Multiscale Analysis.- 3.3 Exponential localization.- 3.4 Dynamical localization.- 3.5 More models.- 4 Appendix.- 4.1 A short story of selfadjoint operators.- 4.2 Some basics from probability theory.- 5 Aftermath.- References.- Author Index.

最近チェックした商品