Semi-Markov Processes and Reliability (Statistics for Industry and Technology)

個数:
  • ポイントキャンペーン

Semi-Markov Processes and Reliability (Statistics for Industry and Technology)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 222 p.
  • 言語 ENG
  • 商品コード 9781461266402
  • DDC分類 006

Full Description

At first there was the Markov property. The theory of stochastic processes, which can be considered as an exten­ sion of probability theory, allows the modeling of the evolution of systems through the time. It cannot be properly understood just as pure mathemat­ ics, separated from the body of experience and examples that have brought it to life. The theory of stochastic processes entered a period of intensive develop­ ment, which is not finished yet, when the idea of the Markov property was brought in. Not even a serious study of the renewal processes is possible without using the strong tool of Markov processes. The modern theory of Markov processes has its origins in the studies by A. A: Markov (1856-1922) of sequences of experiments "connected in a chain" and in the attempts to describe mathematically the physical phenomenon known as Brownian mo­ tion. Later, many generalizations (in fact all kinds of weakenings of the Markov property) of Markov type stochastic processes were proposed. Some of them have led to new classes of stochastic processes and useful applications. Let us mention some of them: systems with complete connections [90, 91, 45, 86]; K-dependent Markov processes [44]; semi-Markov processes, and so forth. The semi-Markov processes generalize the renewal processes as well as the Markov jump processes and have numerous applications, especially in relia­ bility.

Contents

1 Introduction to Stochastic Processes and the Renewal Process.- 1.1 Preliminaries.- 1.2 Stopping Times.- 1.3 Important Families of Stochastic Processes.- 1.4 Renewal Processes.- 1.5 Regenerative Processes.- 2 Markov Renewal Processes.- 2.1 The Semi-Markov Kernel.- 2.2 Processes Associated to a Semi-Markov Kernel.- 2.3 Specification of a Markov Renewal Process.- 2.4 Robustness of Markov Renewal Processes.- 2.5 Korolyuk's State Space Merging Method.- 3 Semi-Markov Processes.- 3.1 Basic Definitions and Properties.- 3.2 Markov Renewal Equation.- 3.3 Functional of the Semi-Markov Process.- 3.4 Associated Markov Processes.- 3.5 Asymptotic Behavior.- 4 Countable State Space Markov Renewal and Semi-Markov Processes.- 4.1 Definitions.- 4.2 Classification of States.- 4.3 Markov Renewal Equation.- 4.4 Asymptotic Behavior.- 4.5 Finite State Space Semi-Markov Processes.- 4.6 Distance Between Transition Functions.- 4.7 Phase Type Semi-Markov Kernels.- 4.8 Elements of Statistical Estimation.- 5 Reliability of Semi-Markov Systems.- 5.1 Introduction.- 5.2 Basic Definitions.- 5.3 Coherent Systems.- 5.4 Reliability Modeling in the Finite State Space Case.- 5.5 Methods for Obtaining Transition Probabilities.- 5.6 Reliability and Performability Modeling in the General State Space Case.- 6 Examples of Reliability Modeling.- 6.1 Introduction.- 6.2 A Three-State System.- 6.3 A System with Mixed Constant Repair Time.- 6.4 A System with Multiphase Repair.- 6.5 Availability of a Series System.- 6.6 A Maintenance Model.- 6.7 A System with Nonregenerative States.- 6.8 A Two-Component System with Cold Standby.- 6.9 Markov Renewal Shock Models.- 6.10 Stochastic Petri Nets.- 6.11 Monte Carlo Methods.- A Measures and Probability.- A.I Fundamentals.- A.2 Conditional Distributions.- A.3 FundamentalFormulas.- A.4 Examples.- B Laplace-Stieltjes Transform.- C Weak Convergence.- References.- Notation.