An Introduction to Wavelet Analysis (Applied and Numerical Harmonic Analysis)

個数:
  • ポイントキャンペーン

An Introduction to Wavelet Analysis (Applied and Numerical Harmonic Analysis)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 452 p.
  • 言語 ENG
  • 商品コード 9781461265672
  • DDC分類 004

Full Description

An Introduction to Wavelet Analysis provides a comprehensive
presentation
of the conceptual basis of wavelet analysis, including the
construction
and application of wavelet bases. The book develops the basic theory
of wavelet bases and transforms without assuming any knowledge of
Lebesgue integration or the theory of abstract Hilbert spaces. The
book motivates the central ideas of wavelet theory by offering a
detailed exposition of the Haar series, and then shows how a more
abstract approach allows us to generalize and improve upon the Haar
series. Once these ideas have been established and explored,
variations and extensions of Haar construction are presented. The
mathematical pre-requisites for the book are a course in advanced
calculus, familiarity with the language of formal mathematical proofs,
and basic linear algebra concepts. Features: *Rigorous proofs with
consistent assumptions on the mathematical background of the reader;
does not assume familiarity with Hilbert spaces or Lebesgue measure *
Complete background material on (Fourier Analysis topics) Fourier
Analysis * Wavelets are presented first on the continuous domain and
later restricted to the discrete domain, for improved motivation and
understanding of discrete wavelet transforms and applications.
* Special appendix, "Excursions in Wavelet Theory " provides a guide
to
current literature on the topic
* Over 170 exercises guide the reader through the text. The book is
an ideal text/reference for a broad audience of advanced students and
researchers in applied mathematics, electrical engineering,
computational science, and physical sciences. It is also suitable as a
self-study reference guide for professionals. All readers will find

Contents

1. Preface, 2. Functions and Convergence, 3. Fourier Series, 4. The
Fourier Transform, 5. Signals and Systems, 6. The Haar System, 7. The
Discrete Haar Transform, 8. Mulitresolution Analysis, 9. The Discrete
Wavelet transform, 10. Smooth, Compactly Supported Wavelets, 11.
Biorthogonal Wavelets, 12. Wavelet Packets, 13. Image Compression, 14.
Integral Operations; Appendices