Global Bifurcations and Chaos : Analytical Methods (Applied Mathematical Sciences)

個数:

Global Bifurcations and Chaos : Analytical Methods (Applied Mathematical Sciences)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 495 p.
  • 言語 ENG
  • 商品コード 9781461210412
  • DDC分類 515

Full Description

Global Bifurcations and Chaos: Analytical Methods is unique in the literature of chaos in that it not only defines the concept of chaos in deterministic systems, but it describes the mechanisms which give rise to chaos (i.e., homoclinic and heteroclinic motions) and derives explicit techniques whereby these mechanisms can be detected in specific systems. These techniques can be viewed as generalizations of Melnikov's method to multi-degree of freedom systems subject to slowly varying parameters and quasiperiodic excitations. A unique feature of the book is that each theorem is illustrated with drawings that enable the reader to build visual pictures of global dynamcis of the systems being described. This approach leads to an enhanced intuitive understanding of the theory.

Contents

1. Introduction: Background for Ordinary Differential Equations and Dynamical Systems.- 1.1. The Structure of Solutions of Ordinary Differential Equations.- 1.2. Conjugacies.- 1.3. Invariant Manifolds.- 1.4. Transversality, Structural Stability, and Genericity.- 1.5. Bifurcations.- 1.6. Poincaré Maps.- 2. Chaos: Its Descriptions and Conditions for Existence.- 2.1. The Smale Horseshoe.- 2.2. Symbolic Dynamics.- 2.3. Criteria for Chaos: The Hyperbolic Case.- 2.4. Criteria for Chaos: The Nonhyperbolic Case.- 3. Homoclinic and Heteroclinic Motions.- 3.1. Examples and Definitions.- 3.2. Orbits Homoclinic to Hyperbolic Fixed Points of Ordinary Differential Equations.- 3.3. Orbits Heteroclinic to Hyperbolic Fixed Points of Ordinary Differential Equations.- 3.4. Orbits Homoclinic to Periodic Orbits and Invariant Tori.- 4. Global Perturbation Methods for Detecting Chaotic Dynamics.- 4.1. The Three Basic Systems and Their Geometrical Structure.- 4.2. Examples.- 4.3. Final Remarks.- References.

最近チェックした商品