Fibrewise Homotopy Theory (Springer Monographs in Mathematics) (Reprint)

個数:

Fibrewise Homotopy Theory (Springer Monographs in Mathematics) (Reprint)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 349 p.
  • 言語 ENG
  • 商品コード 9781447112679
  • DDC分類 514

Full Description

Topology occupies a central position in the mathematics of today. One of the most useful ideas to be introduced in the past sixty years is the concept of fibre bundle, which provides an appropriate framework for studying differential geometry and much else. Fibre bundles are examples of the kind of structures studied in fibrewise topology. Just as homotopy theory arises from topology, so fibrewise homotopy the­ ory arises from fibrewise topology. In this monograph we provide an overview of fibrewise homotopy theory as it stands at present. It is hoped that this may stimulate further research. The literature on the subject is already quite extensive but clearly there is a great deal more to be done. Efforts have been made to develop general theories of which ordinary homotopy theory, equivariant homotopy theory, fibrewise homotopy theory and so forth will be special cases. For example, Baues [7] and, more recently, Dwyer and Spalinski [53], have presented such general theories, derived from an earlier theory of Quillen, but none of these seem to provide quite the right framework for our purposes. We have preferred, in this monograph, to develop fibre wise homotopy theory more or less ab initio, assuming only a basic knowledge of ordinary homotopy theory, at least in the early sections, but our aim has been to keep the exposition reasonably self-contained.

Contents

I. A Survey of Fibrewise Homotopy Theory.- 1: An Introduction to Fibrewise Homotopy Theory.- 2: The Pointed Theory.- 3: Applications.- II. An Introduction to Fibrewise Stable Homotopy Theory.- 1: Foundations.- 2: Fixed-point Methods.- 3: Manifold Theory.- 4: Homology Theory.- References.

最近チェックした商品