Fundamental Limitations in Filtering and Control (Communications and Control Engineering) (Reprint)

個数:

Fundamental Limitations in Filtering and Control (Communications and Control Engineering) (Reprint)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 383 p.
  • 言語 ENG
  • 商品コード 9781447112440
  • DDC分類 621

Full Description

This book deals with the issue of fundamental limitations in filtering and control system design. This issue lies at the very heart of feedback theory since it reveals what is achievable, and conversely what is not achievable, in feedback systems. The subject has a rich history beginning with the seminal work of Bode during the 1940's and as subsequently published in his well-known book Feedback Amplifier Design (Van Nostrand, 1945). An interesting fact is that, although Bode's book is now fifty years old, it is still extensively quoted. This is supported by a science citation count which remains comparable with the best contemporary texts on control theory. Interpretations of Bode's results in the context of control system design were provided by Horowitz in the 1960's. For example, it has been shown that, for single-input single-output stable open-loop systems having rela­ tive degree greater than one, the integral of the logarithmic sensitivity with respect to frequency is zero. This result implies, among other things, that a reduction in sensitivity in one frequency band is necessarily accompa­ nied by an increase of sensitivity in other frequency bands. Although the original results were restricted to open-loop stable systems, they have been subsequently extended to open-loop unstable systems and systems having nonminimum phase zeros.

Contents

I Introduction.- 1 A Chronicle of System Design Limitations.- II Limitations in Linear Control.- 2 Review of General Concepts.- 3 SISO Control.- 4 MIMO Control.- 5 Extensions to Periodic Systems.- 6 Extensions to Sampled-Data Systems.- III Limitations in Linear Filtering.- 7 General Concepts.- 8 SISO Filtering.- 9 MIMO Filtering.- 10 Extensions to SISO Prediction.- 11 Extensions to SISO Smoothing.- IV Limitations in Nonlinear Control and Filtering.- 12 Nonlinear Operators.- 13 Nonlinear Control.- 14 Nonlinear Filtering.- A Review of Complex Variable Theory.- A.1 Functions, Domains and Regions.- A.2 Complex Differentiation.- A.3 Analytic functions.- A.3.1 Harmonic Functions.- A.4 Complex Integration.- A.4.1 Curves.- A.4.2 Integrals.- A.5 Main Integral Theorems.- A.5.1 Green's Theorem.- A.5.2 The Cauchy Integral Theorem.- A.5.3 Extensions of Cauchy's Integral Theorem.- A.5.4 The Cauchy Integral Formula.- A.6 The Poisson Integral Formula.- A.6.1 Formula for the Half Plane.- A.6.2 Formula for the Disk.- A.7 Power Series.- A.7.1 Derivatives of Analytic Functions.- A.7.2 Taylor Series.- A.7.3 Laurent Series.- A.8 Singularities.- A.8.1 Isolated Singularities.- A.8.2 Branch Points.- A.9 Integration of Functions with Singularities.- A.9.1 Functions with Isolated Singularities.- A.9.2 Functions with Branch Points.- A. 10 The Maximum Modulus Principle.- A. 11 Entire Functions.- Notes and References.- B Proofs of Some Results in the Chapters.- B.1 Proofs for Chapter 4.- B.2 Proofs for Chapter 6.- B.2.1 Proof of Lemma 6.2.2.- B.2.2 Proof of Lemma 6.2.4.- B.2.3 Proof of Lemma 6.2.5.- C The Laplace Transform of the Prediction Error.- D Least Squares Smoother Sensitivities for Large ?.- References.

最近チェックした商品