Machine Vision Algorithms in Java : Techniques and Implementation

個数:
  • ポイントキャンペーン

Machine Vision Algorithms in Java : Techniques and Implementation

  • ウェブストア価格 ¥37,098(本体¥33,726)
  • Springer London Ltd(2012/09発売)
  • 外貨定価 US$ 169.99
  • 【ウェブストア限定】洋書・洋古書ポイント5倍対象商品(~2/28)
  • ポイント 1,685pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 284 p.
  • 言語 ENG
  • 商品コード 9781447110668
  • DDC分類 621

Full Description

Machine Vision Algorithms in Java provides a comprehensive introduction to the algorithms and techniques associated with machine vision systems. The Java programming language is also introduced, with particular reference to its imaging capabilities. The book contains explanations of key machine vision techniques and algorithms, along with the associated Java source code.
Special features include:
- A complete self-contained treatment of the topics and techniques essential to the understanding and implementation of machine vision.
- An introduction to object-oriented programming and to the Java programming language, with particular reference to its imaging capabilities.
- Java source code for a wide range of practical image processing and analysis functions.
- Readers will be given the opportunity to download a fully functional Java-based visual programming environment for machine vision, available via the WWW. This contains over 200 image processing, manipulation and analysis functions and will enable users to implement many of the ideas covered in this book.
- Details relating to the design of a Java-based visual programming environment for machine vision.
- An introduction to the Java 2D imaging and Java Advanced Imaging (JAI) APIs
- A wide range of illustrative examples.
- Practical treatment of the subject matter.
This book is aimed at senior undergraduate and postgraduate students in engineering and computer science as well as practitioners in machine vision who may wish to update or expand their knowledge of the subject. The techniques and algorithms of machine vision are expounded in a way that will be understood not only by specialists but also by those who are less familiar with the topic.

Contents

1. An Introduction to Machine Vision.- 1.1 Human, Computer and Machine Vision.- 1.2 Vision System Hardware.- 1.3 Vision System Software.- 1.4 Machine Vision System Design.- 1.5 NeatVision: Where Java meets Machine Vision.- 2. Java Fundamentals.- 2.1 The History of Java.- 2.2 Object-oriented Programming.- 2.3 Java Language Basics.- 2.4 Applications and Applets.- 2.5 Java and Image Processing.- 2.6 Additional Classes.- 2.7 Double Buffering.- 2.8 Recent Additions to Java for Imaging.- 2.9 Additional Information on Java.- 2.10 Conclusion.- 3. Machine Vision Techniques.- 3.1 Elementary Image Processing Functions.- 3.2 Local Operators.- 3.3 Binary Images.- 3.4 Global Image Transforms.- 3.5 Conclusion.- 4. Mathematical Morphology.- 4.1 Binary Mathematical Morphology.- 4.2 Grey Scale Mathematical Morphology.- 4.3 Morphological Reconstruction.- 4.4 Morphological Segmentation.- 4.5 Case Study: Geometric Packing.- 4.6 Morphological System Implementation.- 4.7 Conclusion.- 5. Texture Analysis.- 5.1 Texture and Images.- 5.2 Edge Density.- 5.3 Monte-Carlo Method.- 5.4 Auto-Correlation Function (ACF).- 5.5 Fourier Spectral Analysis.- 5.6 Histogram Features.- 5.7 Grey Level Run Length Method (GLRLM).- 5.8 Grey Level Difference Method (GLDM).- 5.9 Co-occurrence Analysis.- 5.10 Morphological Texture Analysis.- 5.11 Fractal Analysis.- 5.12 Textural Energy.- 5.13 Texture Spectrum Method.- 5.14 Local Binary Patterns (LBP).- 5.15 Random Field Models.- 5.16 Spatial/Frequency Methods.- 5.17 Autoregressive Model.- 5.18 Structural Approaches to Texture Analysis.- 5.19 Conclusion.- 6. Colour Image Analysis.- 6.1 Colour Cameras.- 6.2 Red-Green-Blue (RGB) Colour Representation.- 6.3 Hue-Saturation-Intensity (HSI) Colour Representation.- 6.4 Opponent Process Representation.- 6.5 YIQ Colour Representation.- 6.6 YUV Colour Representation.- 6.7 CIE Chromaticity Diagram.- 6.8 CIEXYZ Colour Representation.- 6.9 CIELUV Colour Representation.- 6.10 CIELAB Colour Representation.- 6.11 Spatial CIELAB Colour Representation.- 6.12 Programmable Colour Filter (PCF).- 6.13 Conclusion.- 7. NeatVision: Visual Programming for Machine Vision.- 7.1 Visual Programming in Neat Vision.- 7.2 Java Programming in NeatVision.- 7.3 The Neat Vision Application.- 7.4 Sample Applications.- 7.5 Conclusion.- A. NeatVision Graphic File Formats.- B. NeatVision Imaging API Specification.- C. NeatVision Components.- References.

最近チェックした商品