Chaos : A Statistical Perspective (Springer Series in Statistics)

個数:

Chaos : A Statistical Perspective (Springer Series in Statistics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 315 p.
  • 言語 ENG
  • 商品コード 9781441929365
  • DDC分類 519

Full Description

It was none other than Henri Poincare who at the turn of the last century, recognised that initial-value sensitivity is a fundamental source of random­ ness. For statisticians working within the traditional statistical framework, the task of critically assimilating randomness generated by a purely de­ terministic system, often known as chaos, is an intellectual challenge. Like some other statisticians, we have taken up this challenge and our curiosity as reporters and participants has led us to investigate beyond the earlier discoveries in the field. Earlier statistical work in the area was mostly con­ cerned with the estimation of what is sometimes imprecisely called the fractal dimension. During the different stages of our writing, substantial portions of the book were used in lectures and seminars. These include the DMV (German Mathematical Society) Seminar Program, the inaugural session of lectures to the Crisis Points Project at the Peter Wall Institute of Advanced Stud­ ies, University of British Columbia and the graduate courses on Time Series Analysis at the University of Iowa, the University of Hong Kong, the Lon­ don School of Economics and Political Science, and the Chinese University of Hong Kong. We have therefore benefitted greatly from the comments and suggestions of these audiences as well as from colleagues and friends. We are grateful to them for their contributions. Our special thanks go to Colleen Cutler, Cees Diks, Barbel FinkensHidt, Cindy Greenwood, Masakazu Shi­ mada, Floris Takens and Qiwei Yao.

Contents

1 Introduction and Case Studies.- 2 Deterministic Chaos.- 3 Chaos and Stochastic Systems.- 4 Statistical Analysis I.- 5 Statistical Analysis II.- 6 Nonlinear Least-Square Prediction.- 7 Miscellaneous Topics.- Appendix A Deterministic Chaos.- A.1 Introduction.- A.2 Attracting Sets.- A.3 Another Look At the Logistic Maps.- A.4 Attractors.- A.5 Two Approaches to Studying Chaos.- A.6 Invariant and Ergodic Distributions.- A.7 Lyapunov Exponents.- A.8 Natural Measures.- A.9 Dimensions of an Attractor.- A.9.1 Box-Counting Dimension.- A.9.2 Correlation Dimension.- A.10 Map Reconstruction.- A. 11 Some Elements of Differentiable Manifolds.- A.12 Hyperbolic Sets.- A.13 Notes.- Appendix B Supplements to Chapter 3.- B.1 Criteria for Ergodicity.- B.1.1 Notes.- B.2 Proofs of Two Theorems in §3.3.2.- B.3 Shadowing and Hyperbolic Attractors.- Appendix C Data Sets and Software.- References.- Author Index.

最近チェックした商品