線形回帰とANOVAを理解する:統計分析・図解のためのSAS利用<br>Applied Regression and ANOVA Using SAS

個数:
  • ポイントキャンペーン

線形回帰とANOVAを理解する:統計分析・図解のためのSAS利用
Applied Regression and ANOVA Using SAS

  • ウェブストア価格 ¥25,149(本体¥22,863)
  • Chapman & Hall/CRC(2022/06発売)
  • 外貨定価 US$ 115.99
  • 【ウェブストア限定】洋書・洋古書ポイント5倍対象商品(~2/28)
  • ポイント 1,140pt
  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 406 p.
  • 言語 ENG
  • 商品コード 9781439869512
  • DDC分類 519.536

Full Description

Applied Regression and ANOVA Using SAS® has been written specifically for non-statisticians and applied statisticians who are primarily interested in what their data are revealing. Interpretation of results are key throughout this intermediate-level applied statistics book. The authors introduce each method by discussing its characteristic features, reasons for its use, and its underlying assumptions. They then guide readers in applying each method by suggesting a step-by-step approach while providing annotated SAS programs to implement these steps.

Those unfamiliar with SAS software will find this book helpful as SAS programming basics are covered in the first chapter. Subsequent chapters give programming details on a need-to-know basis. Experienced as well as entry-level SAS users will find the book useful in applying linear regression and ANOVA methods, as explanations of SAS statements and options chosen for specific methods are provided.

Features:

•Statistical concepts presented in words without matrix algebra and calculus
•Numerous SAS programs, including examples which require minimum programming effort to produce high resolution publication-ready graphics
•Practical advice on interpreting results in light of relatively recent views on threshold p-values, multiple testing, simultaneous confidence intervals, confounding adjustment, bootstrapping, and predictor variable selection
•Suggestions of alternative approaches when a method's ideal inference conditions are unreasonable for one's data

This book is invaluable for non-statisticians and applied statisticians who analyze and interpret real-world data. It could be used in a graduate level course for non-statistical disciplines as well as in an applied undergraduate course in statistics or biostatistics.

Contents

1. Review of Some Basic Statistical Ideas
2. Introduction to Simple Linear Regression
3. Model Checking in Simple Linear Regression
4. Interpreting a Simple Linear Regression Analysis
5. Introduction to Multiple Linear Regression
6. Before Interpreting A Multiple Linear Regression
7. Additive Multiple Linear Regression
8. Two-Way Interaction Between Continuous Predictors
9. Qualitative and Continuous Predictor Interaction
10. Predictor Subset Selection
11. Evaluating Equality of Group Means
12. Simultaneous Inference
13. Adjusting Group Means for Nuisance Variables
14. Alternative Approaches

最近チェックした商品