逐次解析:仮説検定と変化点検出<br>Sequential Analysis : Hypothesis Testing and Changepoint Detection (Chapman & Hall/crc Monographs on Statistics and Applied Probability)

個数:

逐次解析:仮説検定と変化点検出
Sequential Analysis : Hypothesis Testing and Changepoint Detection (Chapman & Hall/crc Monographs on Statistics and Applied Probability)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 604 p.
  • 言語 ENG
  • 商品コード 9781439838204
  • DDC分類 519.54

基本説明

Presents an overview of the theory and applications of sequential methods for hypothesis testing and changepoint detection in a wide range of engineering and environmental domains. It describes all the important theoretical developments with an emphasis on applications, including environmental surveillance, biomedical engineering, image processing, computer security, econometrics, and finance.

Full Description

Sequential Analysis: Hypothesis Testing and Changepoint Detection systematically develops the theory of sequential hypothesis testing and quickest changepoint detection. It also describes important applications in which theoretical results can be used efficiently.

The book reviews recent accomplishments in hypothesis testing and changepoint detection both in decision-theoretic (Bayesian) and non-decision-theoretic (non-Bayesian) contexts. The authors not only emphasize traditional binary hypotheses but also substantially more difficult multiple decision problems. They address scenarios with simple hypotheses and more realistic cases of two and finitely many composite hypotheses. The book primarily focuses on practical discrete-time models, with certain continuous-time models also examined when general results can be obtained very similarly in both cases. It treats both conventional i.i.d. and general non-i.i.d. stochastic models in detail, including Markov, hidden Markov, state-space, regression, and autoregression models. Rigorous proofs are given for the most important results.

Written by leading authorities in the field, this book covers the theoretical developments and applications of sequential hypothesis testing and sequential quickest changepoint detection in a wide range of engineering and environmental domains. It explains how the theoretical aspects influence the hypothesis testing and changepoint detection problems as well as the design of algorithms.

Contents

Motivations for the sequential approach. Background on probability and statistics. Sequential Hypothesis Testing: Sequential hypothesis testing—Two simple hypotheses. Sequential hypothesis testing—Multiple simple hypotheses. Sequential hypothesis testing—Composite hypotheses. Change-Point Detection: Statistical models with changes—Problem formulations and optimality criteria. Sequential change-point detection—Bayesian approach. Sequential change-point detection—Non-Bayesian approaches. Multichart change-point detection procedures for composite hypotheses and multipopulation models. Sequential change-point detection and isolation. Applications: Selected applications.

最近チェックした商品