Support Vector Machines and Their Application in Chemistry and Biotechnology

個数:

Support Vector Machines and Their Application in Chemistry and Biotechnology

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 212 p.
  • 言語 ENG
  • 商品コード 9781439821275
  • DDC分類 543.015181

基本説明

Presents the theory of SVMs in a way that is easy to understand regardless of mathematical background.

Full Description

Support vector machines (SVMs) are used in a range of applications, including drug design, food quality control, metabolic fingerprint analysis, and microarray data-based cancer classification. While most mathematicians are well-versed in the distinctive features and empirical performance of SVMs, many chemists and biologists are not as familiar with what they are and how they work. Presenting a clear bridge between theory and application, Support Vector Machines and Their Application in Chemistry and Biotechnology provides a thorough description of the mechanism of SVMs from the point of view of chemists and biologists, enabling them to solve difficult problems with the help of these powerful tools.

Topics discussed include:




Background and key elements of support vector machines and applications in chemistry and biotechnology
Elements and algorithms of support vector classification (SVC) and support vector regression (SVR) machines, along with discussion of simulated datasets
The kernel function for solving nonlinear problems by using a simple linear transformation method
Ensemble learning of support vector machines
Applications of support vector machines to near-infrared data
Support vector machines and quantitative structure-activity/property relationship (QSAR/QSPR)
Quality control of traditional Chinese medicine by means of the chromatography fingerprint technique
The use of support vector machines in exploring the biological data produced in OMICS study

Beneficial for chemical data analysis and the modeling of complex physic-chemical and biological systems, support vector machines show promise in a myriad of areas. This book enables non-mathematicians to understand the potential of SVMs and utilize them in a host of applications.

Contents

Overview of support vector machines. Support vector machines for classification and regression. Kernel methods. Ensemble learning of support vector machines. Support vector machines applied to near-infrared spectroscopy. Support vector machines and QSAR/QSPR. Support vector machines applied to traditional Chinese medicine. Support vector machines applied to OMICS study. Index.

最近チェックした商品