Linear Causal Modeling with Structural Equations (Chapman & Hall/crc Statistics in the Social and Behavioral Sciences)

個数:
  • ポイントキャンペーン

Linear Causal Modeling with Structural Equations (Chapman & Hall/crc Statistics in the Social and Behavioral Sciences)

  • ウェブストア価格 ¥49,737(本体¥45,216)
  • Chapman & Hall/CRC(2009/06発売)
  • 外貨定価 US$ 225.00
  • 【ウェブストア限定】洋書・洋古書ポイント5倍対象商品(~2/28)
  • ポイント 2,260pt
  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 468 p.
  • 言語 ENG
  • 商品コード 9781439800386
  • DDC分類 515.63

基本説明

Provides applications to confirmatory factor analysis, multilevel models, longitudinal models, and nonrecursive models.

Full Description

Emphasizing causation as a functional relationship between variables that describe objects, Linear Causal Modeling with Structural Equations integrates a general philosophical theory of causation with structural equation modeling (SEM) that concerns the special case of linear causal relations. In addition to describing how the functional relation concept may be generalized to treat probabilistic causation, the book reviews historical treatments of causation and explores recent developments in experimental psychology on studies of the perception of causation. It looks at how to perceive causal relations directly by perceiving quantities in magnitudes and motions of causes that are conserved in the effects of causal exchanges.

The author surveys the basic concepts of graph theory useful in the formulation of structural models. Focusing on SEM, he shows how to write a set of structural equations corresponding to the path diagram, describes two ways of computing variances and covariances of variables in a structural equation model, and introduces matrix equations for the general structural equation model. The text then discusses the problem of identifying a model, parameter estimation, issues involved in designing structural equation models, the application of confirmatory factor analysis, equivalent models, the use of instrumental variables to resolve issues of causal direction and mediated causation, longitudinal modeling, and nonrecursive models with loops. It also evaluates models on several dimensions and examines the polychoric and polyserial correlation coefficients and their derivation.

Covering the fundamentals of algebra and the history of causality, this book provides a solid understanding of causation, linear causal modeling, and SEM. It takes readers through the process of identifying, estimating, analyzing, and evaluating a range of models.

Contents

Introduction. Mathematical Foundations for Structural Equation Modeling. Causation. Graph Theory for Causal Modeling. Structural Equation Models. Identification. Estimation of Parameters. Designing SEM Studies. Confirmatory Factor Analysis. Equivalent Models. Instrumental Variables. Multilevel Models. Longitudinal Models. Nonrecursive Models. Model Evaluation. Polychoric Correlation and Polyserial Correlation. References. Index.

最近チェックした商品