Introduction to Probability and Its Applications, International Edition (3RD)

個数:

Introduction to Probability and Its Applications, International Edition (3RD)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 480 p.
  • 言語 ENG
  • 商品コード 9781439047262
  • DDC分類 519.2

Full Description

This text focuses on the utility of probability in solving real-world problems for students in a one-semester calculus-based probability course. Theory is developed to a practical degree and grounded in discussion of its practical uses in solving real-world problems. Numerous applications using up-to-date real data in engineering and the life, social, and physical sciences illustrate and motivate the many ways probability affects our lives. The text's accessible presentation carefully progresses from routine to more difficult problems to suit students of different backgrounds, and carefully explains how and where to apply methods. Students going on to more advanced courses in probability and statistics will gain a solid background in fundamental concepts and theory, while students who must apply probability to their courses engineering and the sciences will develop a working knowledge of the subject and appreciation of its practical power.

Contents

1. PROBABILITY IN THE WORLD AROUND US.
Why Study Probability? Deterministic and Probabilistic Models. Modeling Reality. Deterministic Models. Probabilistic Models. Applications in Probability. A Brief Historical Note. A Look Ahead.
2. FOUNDATIONS OF PROBABILITY.
Understanding Randomness: An Intuitive Notion of Probability. Randomness with Known Structure. Randomness with Unknown Structure. Sampling a Finite Universe. Sample Space and Events. Definition of Probability. Counting Rules Useful in Probability. More Counting Rules Useful in Probability. Summary.
3. CONDITIONAL PROBABILITY AND INDEPENDENCE.
Conditional Probability. Independence. Theorem of Total Probability and Bayes' Rule. Odds, Odds Ratios, and Relative Risk. Summary.
4. DISCRETE PROBABILITY DISTRIBUTIONS.
Random Variables and Their Probability Distributions. Expected Values of Random Variables. The Bernoulli Distribution. The Binomial Distribution. Probability Function. Mean and Variance. History and Applications. The Geometric Distribution. Probability Function. Mean and Variance. An Alternate Parameterization: Number of Trials Versus Number of Failures. The Negative Binomial Distribution. Probability Function. Mean and Variance. An Alternate Parameterization: Number of Trials Versus Number of Failures. History and Applications. The Poisson Distribution. Probability Function. Mean and Variance. History and Applications. The Hypergeometric Distribution. The Probability Function. Mean and Variance. History and Applications. The Moment-generating Function. The Probability-generating Function. Markov Chains. Summary.
5. CONTINUOUS PROBABILITY DISTRIBUTIONS.
Continuous Random Variables and Their Probability Distributions. Expected Values of Continuous Random Variables. The Uniform Distribution. Probability Density Function. Mean and Variance. History and Applications. The Exponential Distribution. Probability Density Function. Mean and Variance. Properties. History and Applications. The Gamma Distribution. Probability Density Function. Mean and Variance. History and Applications. The Normal Distribution. The Normal Probability Density Function. Mean and Variance. Calculating Normal Probabilities. Applications to Real Data. Quantile-Quantile (Q-Q) Plots. History. The Beta Distribution. Probability Density Function. Mean and Variance. H istory and Applications. The Weibull Distribution. Probability Density Function. Mean and Variance. History and Applications to Real Data. Reliability. Hazard Rate Function. Series and Parallel Systems. Redundancy. Moment-generating Functions for Continuous Random Variables. Expectations of Discontinuous Functions and Mixed Probability Distributions. Summary.
6. MULTIVARIATE PROBABILITY DISTRIBUTIONS.
Bivariate and Marginal Probability Distributions. Conditional Probability Distributions. Independent Random Variables. Expected Values of Functions of Random Variables. Conditional Expectations. The Multinomial Distribution. More on the Moment-Generating Function. Compounding and Its Applications. Summary.
7. FUNCTIONS OF RANDOM VARIABLES.
Introduction. Functions of Discrete Random Variables. Method of Distribution Functions. Method of Transformations in One Dimension. Method of Conditioning. Method of Moment-Generating Functions. Gamma Case. Normal Case. Normal and Gamma Relationships. Method of Transformation—Two Dimensions. Order Statistics. Probability-Generating Functions: Applications to Random Sums of Random Variables. Summary.
8. SOME APPROXIMATIONS TO PROBABILITY DISTRIBUTIONS: LIMIT THEOREMS.
Introduction. Convergence in Probability. Convergence in Distribution. The Central Limit Theorem. Combination of Convergence in Probability and Convergence in Distribution. Summary.
9. EXTENSIONS OF PROBABILITY THEORY.
The Poisson Process. Birth and Death Processes: Biological Applications. Queues: Engineering Applications. Arrival Times for the Poisson Process. Infinite Server Queue. Renewal Theory: Reliability Applications. Summary.

最近チェックした商品