行列計算(第4版)<br>Matrix Computations (Johns Hopkins Studies in the Mathematical Sciences) (4TH)

個数:

行列計算(第4版)
Matrix Computations (Johns Hopkins Studies in the Mathematical Sciences) (4TH)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 784 p.
  • 言語 ENG
  • 商品コード 9781421407944
  • DDC分類 512.9434

基本説明

This revision is a cover-to-cover expansion and renovation of the third edition. It now includes an introduction to tensor computations and several new sections.

Full Description

The fourth edition of Gene H. Golub and Charles F. Van Loan's classic is an essential reference for computational scientists and engineers in addition to researchers in the numerical linear algebra community. Anyone whose work requires the solution to a matrix problem and an appreciation of its mathematical properties will find this book to be an indispensible tool. This revision is a cover-to-cover expansion and renovation of the third edition. It now includes an introduction to tensor computations and brand new sections on: fast transforms; parallel LU; discrete Poisson solvers; pseudospectra; structured linear equation problems; structured eigenvalue problems; large-scale SVD methods; and, polynomial eigenvalue problems. Matrix Computations is packed with challenging problems, insightful derivations, and pointers to the literature-everything needed to become a matrix-savvy developer of numerical methods and software.

Contents

Preface
Global References
Other Books
Useful URLs
Common Notation
Chapter 1. Matrix Multiplication
1.1. Basic Algorithms and Notation
1.2. Structure and Efficiency
1.3. Block Matrices and Algorithms
1.4. Fast Matrix-Vector Products
1.5. Vectorization and Locality
1.6. Parallel Matrix Multiplication
Chapter 2. Matrix Analysis
2.1. Basic Ideas from Linear Algebra
2.2. Vector Norms
2.3. Matrix Norms
2.4. The Singular Value Decomposition
2.5. Subspace Metrics
2.6. The Sensitivity of Square Systems
2.7. Finite Precision Matrix Computations
Chapter 3. General Linear Systems
3.1. Triangular Systems
3.2. The LU Factorization
3.3. Roundoff Error in Gaussian Elimination
3.4. Pivoting
3.5. Improving and Estimating Accuracy
3.6. Parallel LU
Chapter 4. Special Linear Systems
4.1. Diagonal Dominance and Symmetry
4.2. Positive Definite Systems
4.3. Banded Systems
4.4. Symmetric Indefinite Systems
4.5. Block Tridiagonal Systems
4.6. Vandermonde Systems
4.7. Classical Methods for Toeplitz Systems
4.8. Circulant and Discrete Poisson Systems
Chapter 5. Orthogonalization and Least Squares
5.1. Householder and Givens Transformations
5.2. The QR Factorization
5.3. The Full-Rank Least Squares Problem
5.4. Other Orthogonal Factorizations
5.5. The Rank-Deficient Least Squares Problem
5.6. Square and Underdetermined Systems
Chapter 6. Modified Least Squares Problems and Methods
6.1. Weighting and Regularization
6.2. Constrained Least Squares
6.3. Total Least Squares
6.4. Subspace Computations with the SVD
6.5. Updating Matrix Factorizations
Chapter 7. Unsymmetric Eigenvalue Problems
7.1. Properties and Decompositions
7.2. Perturbation Theory
7.3. Power Iterations
7.4. The Hessenberg and Real Schur Forms
7.5. The Practical QR Algorithm
7.6. Invariant Subspace Computations
7.7. The Generalized Eigenvalue Problem
7.8. Hamiltonian and Product Eigenvalue Problems
7.9. Pseudospectra
Chapter 8. Symmetric Eigenvalue Problems
8.1. Properties and Decompositions
8.2. Power Iterations
8.3. The Symmetric QR Algorithm
8.4. More Methods for Tridiagonal Problems
8.5. Jacobi Methods
8.6. Computing the SVD
8.7. Generalized Eigenvalue Problems with Symmetry
Chapter 9. Functions of Matrices
9.1. Eigenvalue Methods
9.2. Approximation Methods
9.3. The Matrix Exponential
9.4. The Sign, Square Root, and Log of a Matrix
Chapter 10. Large Sparse Eigenvalue Problems
10.1. The Symmetric Lanczos Process
10.2. Lanczos, Quadrature, and Approximation
10.3. Practical Lanczos Procedures
10.4. Large Sparse SVD Frameworks
10.5. Krylov Methods for Unsymmetric Problems
10.6. Jacobi-Davidson and Related Methods
Chapter 11. Large Sparse Linear System Problems
11.1. Direct Methods
11.2. The Classical Iterations
11.3. The Conjugate Gradient Method
11.4. Other Krylov Methods
11.5. Preconditioning
11.6. The Multigrid Framework
Chapter 12. Special Topics
12.1. Linear Systems with Displacement Structure
12.2. Structured-Rank Problems
12.3. Kronecker Product Computations
12.4. Tensor Unfoldings and Contractions
12.5. Tensor Decompositions and Iterations
Index

最近チェックした商品