神経科学データの時系列モデリング<br>Time Series Modeling of Neuroscience Data (Chapman & Hall/crc Interdisciplinary Statistics)

個数:

神経科学データの時系列モデリング
Time Series Modeling of Neuroscience Data (Chapman & Hall/crc Interdisciplinary Statistics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 574 p.
  • 言語 ENG
  • 商品コード 9781420094602
  • DDC分類 616.80015118

Full Description

Recent advances in brain science measurement technology have given researchers access to very large-scale time series data such as EEG/MEG data (20 to 100 dimensional) and fMRI (140,000 dimensional) data. To analyze such massive data, efficient computational and statistical methods are required.

Time Series Modeling of Neuroscience Data shows how to efficiently analyze neuroscience data by the Wiener-Kalman-Akaike approach, in which dynamic models of all kinds, such as linear/nonlinear differential equation models and time series models, are used for whitening the temporally dependent time series in the framework of linear/nonlinear state space models. Using as little mathematics as possible, this book explores some of its basic concepts and their derivatives as useful tools for time series analysis. Unique features include:

A statistical identification method of highly nonlinear dynamical systems such as the Hodgkin-Huxley model, Lorenz chaos model, Zetterberg Model, and more
Methods and applications for Dynamic Causality Analysis developed by Wiener, Granger, and Akaike
A state space modeling method for dynamicization of solutions for the Inverse Problems
A heteroscedastic state space modeling method for dynamic non-stationary signal decomposition for applications to signal detection problems in EEG data analysis
An innovation-based method for the characterization of nonlinear and/or non-Gaussian time series
An innovation-based method for spatial time series modeling for fMRI data analysis
The main point of interest in this book is to show that the same data can be treated using both a dynamical system and time series approach so that the neural and physiological information can be extracted more efficiently. Of course, time series modeling is valid not only in neuroscience data analysis but also in many other sciences and engineering fields where the statistical inference from the observed time series data plays an important role.

Contents

Introduction. Dynamic Models for Time Series Prediction: Time Series Prediction and the Power Spectrum. Discrete-Time Dynamic Models. Multivariate Dynamic Models. Continuous-Time Dynamic Models. Some More Models. Related Theories and Tools: Prediction and Doob Decomposition. Dynamics and Stationary Distributions. Bridge between Continuous-Time Models and Discrete-Time Models. Likelihood of Dynamic Models. State Space Modeling: Inference Problem (a) for State Space Models. Inference Problem (b) for State Space Models. Art of Likelihood Maximization. Causality Analysis. The New and Old Problems. References. Index.

最近チェックした商品