Emergent Semantics

個数:

Emergent Semantics

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 240 p.
  • 言語 ENG
  • 商品コード 9781420092271
  • DDC分類 025.04

基本説明

Describes a new way of building global agreements (semantic interoperability) based only on decentraized, self-organizing interactions.

Full Description


Peer-to-peer systems are evolving with new information-system architectures, leading to the idea that the principles of decentralization and self-organization will offer new approaches in informatics, especially for systems that scale with the number of users or for which central authorities do not prevail. This book describes a new way of building global agreements (semantic interoperability) based only on decentralized, self-organizing interactions.

Contents

PrefaceChapter 1 Introduction1.1 On Syntax, Semantics and Syntactic Semantics1.2 Emergent Semanticsin Distributed Information Systems1.3 Scope of the Research1.4 What this Book is not about1.5 Outline1.6 ContributionsChapter 2 On Integrating Datain the Internet Era2.1 Federated Databases2.2 XML, RDF and the Semantic WebChapter 3 Peer-to-Peer Information Management3.1 From unstructured to structured P2P Systems3.2 Peer Data ManagementChapter 4 Semantic Gossiping4.1 On Uncertain Schema Mappingsin Decentralized Settings4.1.1 Mapping Completeness4.1.2 Mapping Soundness4.2 The Model4.2.1 The Data Model4.2.2 The Network Model4.3 Overview4.4 Syntactic Similarity4.5 Semantic Similarity4.5.1 Cycle Analysis4.5.2 Result Analysis4.6 Gossiping Algorithm4.7 Case Study4.8 Related Work4.9 ConclusionsChapter 5 Self-Repairing Semantic Networks 5.1 Experimental setup5.2 Cycle Analysis5.3 Result Analysis5.4 Combined Analysis5.5 Related Work5.6 ConclusionsChapter 6 Probabilistic Message Passing 6.1 Introduction6.2 Problem Definition6.2.1 An Introductory Example6.3 Modeling PDMSs as Factor-Graphs6.3.1 A Quick Reminder on Factor-Graphsand Message Passing Schemes6.3.2 On Factor-Graphsin Undirected PDMSs6.3.3 On Factor-Graphs in Directed PDMSswith Containment Mappings6.4 Embedded Message Passing6.4.1 On Feedback Variablesin PDMS Factor-Graphs6.4.2 On Cycles in PDMS Factor-Graphs6.4.3 Embedded Message Passing Schedules6.4.4 Prior Belief Updates6.4.5 Introductory Example Revisited6.5 Performance Evaluation6.5.1 Performance Analyses6.5.2 Performance Evaluationon Random PDMS Networks6.5.3 Applying Message Passingon Real-World Schemas6.6 ConclusionsChapter 7 Analyzing Semantic Interoperability in the Large7.1 Introduction7.2 The Model7.2.1 The Peer-to-Peer Model7.2.2 The Peer-to-Schema Model7.2.3 The Schema-to-Schema Model7.3 Semantic Interoperability In the Large7.3.1 Semantic Connectivity7.4 A Necessary Conditionfor Semantic Interoperability7.4.1 Undirected Model7.4.2 Directed Model7.5 Semantic Component Size7.6 Weighted Graphs7.6.1 Connectivity Indicator7.6.2 Giant Component Size7.7 Semantic Interoperabilityin a Bioinformatic Database Network7.7.1 The Sequence Retrieval System (SRS) 7.7.2 Graph analysis of an SRS repository7.7.3 Applying the Heuristicsto the SRS Graph7.7.4 Generating a Graph witha given Power-Law Degree Distribution7.8 Use Case Scenarios7.9 ConclusionsChapter 8 GridVine:Building Internet-ScaleSemantic Overlay Networks 8.1 Introduction8.2 Overview of our Approach8.2.1 Data Independence8.2.2 Decentralized Semantics8.3 The P-Grid P2P System8.4 Semantic Support8.4.1 Metadata Storage8.4.2 Schema Definition And Storage8.5 Resolving Queries in GridVine8.5.1 Resolving Atomic Queries8.5.2 Resolving Conjunctive Queries8.6 Semantic Interoperability8.6.1 Schema Inheritance8.6.2 Semantic Gossiping8.7 Implementation8.7.1 Architectural Overview8.7.2 Querying8.7.3 Query Reformulation8.7.4 Experimental Evaluation8.8 Related Work8.9 ConclusionsChapter 9 PicShark: Sharing Semi-Structured Annotationsin the Large 9.1 Introduction.9.2 Sharing Semi-Structured Metadata9.2.1 On Semi-Structured Metadata9.2.2 On the Difficultyof Sharing Semi-Structured Metadata9.2.3 Opportunities for ReducingMetadata Scarcity Collaboratively9.3 Formal Model9.3.1 Metadata Entropy9.4 Recontextualizing Semi-Structured Metadata9.4.1 Exporting Local Metadatathrough Data Indexing9.4.2 Dealing with Metadata Incompletenessthrough Intra-Community MetadataImputation9.4.3 Dealing with Metadata Heterogeneitythrough Pairwise Schema Mappings9.4.4 Dealing with Metadata Incompletenessthrough Inter-Community MetadataPropagation9.4.5 Possible Answers and User Feedback9.5 PicShark: Sharing Annotated Picturesin the Large9.5.1 Information Extraction in PicShark9.5.2 Performance Evaluation9.6 Related Work9.7 ConclusionsChapter 10 idMesh: Graph-Based Disambiguationof Online Identities10.1 Introduction10.2 Contributions and Outline10.3 Related Work10.4 Problem Definition10.5 idMesh Constructs10.6 Making Sense of It10.6.1 An Introductory Example10.6.2 Deriving a Factor-Graphto Retrieve Equivalent Identities10.6.3 Deriving a Factor-Graphto Retrieve Up-to-date Identities10.6.4 Query Answering10.7 System Perspective10.7.1 Architectural Overview10.7.2 Distributed Probabilistic Inference10.8 Performance Evaluation10.8.1 Performance of the Inference Network10.8.2 Scale-Up10.9 ConclusionsChapter 11 Conclusions List of Frequently Used Symbols and Abbreviations Bibliography

最近チェックした商品