Geographic Data Mining and Knowledge Discovery (Chapman & Hall/crc Data Mining and Knowledge Discovery Series) (2ND)

個数:

Geographic Data Mining and Knowledge Discovery (Chapman & Hall/crc Data Mining and Knowledge Discovery Series) (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 486 p.
  • 言語 ENG
  • 商品コード 9781420073973
  • DDC分類 910.2856312

基本説明

Contains completely updated chapters as well as eight new chapters, five of which are in the emerging area of spatial-temporal and mobile objects databases, and newly emerging information on geographically weighted regression.

Full Description

The Definitive Volume on Cutting-Edge Exploratory Analysis of Massive Spatial and Spatiotemporal Databases

Since the publication of the first edition of Geographic Data Mining and Knowledge Discovery, new techniques for geographic data warehousing (GDW), spatial data mining, and geovisualization (GVis) have been developed. In addition, there has been a rise in the use of knowledge discovery techniques due to the increasing collection and storage of data on spatiotemporal processes and mobile objects. Incorporating these novel developments, this second edition reflects the current state of the art in the field.

New to the Second Edition




Updated material on geographic knowledge discovery (GKD), GDW research, map cubes, spatial dependency, spatial clustering methods, clustering techniques for trajectory data, the INGENS 2.0 software, and GVis techniques
New chapter on data quality issues in GKD
New chapter that presents a tree-based partition querying methodology for medoid computation in large spatial databases
New chapter that discusses the use of geographically weighted regression as an exploratory technique
New chapter that gives an integrated approach to multivariate analysis and geovisualization
Five new chapters on knowledge discovery from spatiotemporal and mobile objects databases

Geographic data mining and knowledge discovery is a promising young discipline with many challenging research problems. This book shows that this area represents an important direction in the development of a new generation of spatial analysis tools for data-rich environments. Exploring various problems and possible solutions, it will motivate researchers to develop new methods and applications in this emerging field.

Contents

Introduction. Spatiotemporal Data Mining Paradigms and Methodologies. Fundamentals of Spatial Data Warehousing for Geographic Knowledge Discovery. Analysis of Spatial Data with Map Cubes: Highway Traffic Data. Data Quality Issues and Geographic Knowledge Discovery. Spatial Classification and Prediction Models for Geospatial Data Mining. An Overview of Clustering Methods in Geographic Data Analysis. Computing Medoids in Large Spatial Datasets. Looking for a Relationship? Try GWR. Leveraging the Power of Spatial Data Mining to Enhance the Applicability of GIS Technology. Visual Exploration and Explanation in Geography: Analysis with Light. Multivariate Spatial Clustering and Geovisualization. Toward Knowledge Discovery about Geographic Dynamics in Spatiotemporal Databases. The Role of a Multitier Ontological Framework in Reasoning to Discover Meaningful Patterns of Sustainable Mobility. Periodic Pattern Discovery from Trajectories of Moving Objects. Decentralized Spatial Data Mining for Geosensor Networks. Beyond Exploratory Visualization of Space-Time Paths.

最近チェックした商品