Logistic Regression : From Introductory to Advanced Concepts and Applications

個数:
  • ポイントキャンペーン

Logistic Regression : From Introductory to Advanced Concepts and Applications

  • ウェブストア価格 ¥47,968(本体¥43,608)
  • SAGE Publications Inc(2009/07発売)
  • 外貨定価 US$ 217.00
  • 【ウェブストア限定】ブラックフライデーポイント5倍対象商品(~11/24)※店舗受取は対象外
  • ポイント 2,180pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 392 p.
  • 言語 ENG
  • 商品コード 9781412974837
  • DDC分類 519.536

Full Description

In this text, author Scott Menard provides coverage of not only the basic logistic regression model but also advanced topics found in no other logistic regression text. The book keeps mathematical notation to a minimum, making it accessible to those with more limited statistics backgrounds, while including advanced topics of interest to more statistically sophisticated readers. Not dependent on any one software package, the book discusses limitations to existing software packages and ways to overcome them.

Key Features   

Examines the logistic regression model in detail
Illustrates concepts with applied examples to help readers understand how concepts are translated into the logistic regression model 
Helps readers make decisions about the criteria for evaluating logistic regression models through detailed coverage of how to assess overall models and individual predictors for categorical dependent variables 
Offers unique coverage of path analysis with logistic regression that shows readers how to examine both direct and indirect effects using logistic regression analysis 
Applies logistic regression analysis to longitudinal panel data, helping students understand the issues in measuring change with dichotomous, nominal, and ordinal dependent variables
Shows readers how multilevel change models with logistic regression are different from multilevel growth curve models for continuous interval or ratio-scaled dependent variables

Logistic Regression is intended for courses such as Regression and Correlation, Intermediate/Advanced Statistics, and Quantitative Methods taught in departments throughout the behavioral, health, mathematical, and social sciences, including applied mathematics/statistics, biostatistics, criminology/criminal justice, education, political science, public health/epidemiology, psychology, and sociology.

Contents

Preface
Chapter 1. Introduction: Linear Regression and Logistic Regression
Chapter 2. Log-Linear Analysis, Logit Analysis, and Logistic Regression
Chapter 3. Quantitative Approaches to Model Fit and Explained Variation
Chapter 4. Prediction Tables and Qualitative Approaches to Explained Variation
Chapter 5. Logistic Regression Coefficients
Chapter 6. Model Specification, Variable Selection, and Model Building
Chapter 7. Logistic Regression Diagnostics and Problems of Inference
Chapter 8. Path Analysis With Logistic Regression (PALR)
Chapter 9. Polytomous Logistic Regression for Unordered Categorical Variables
Chapter 10. Ordinal Logistic Regression
Chapter 11. Clusters, Contexts, and Dependent Data: Logistic Regression for Clustered Sample Survey Data
Chapter 12. Conditional Logistic Regression Models for Related Samples
Chapter 13. Longitudinal Panel Analysis With Logistic Regression
Chapter 14. Logistic Regression for Historical and Developmental Change Models: Multilevel Logistic Regression and Discrete Time Event History Analysis
Chapter 15. Comparisons: Logistic Regression and Alternative Models
Appendix A: ESTIMATION FOR LOGISTIC REGRESSION MODELS
Appendix B: PROOFS RELATED TO INDICES OF PREDICTIVE EFFICIENCY
Appendix C: ORDINAL MEASURES OF EXPLAINED VARIATION
References
Index