多元的時系列モデル<br>Multiple Time Series Models (Quantitative Applications in the Social Sciences)

個数:

多元的時系列モデル
Multiple Time Series Models (Quantitative Applications in the Social Sciences)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 120 p.
  • 言語 ENG
  • 商品コード 9781412906562
  • DDC分類 300.72

基本説明

Provides a comprehensive, yet accessible introduction to multiple time series in the social sciences.

Full Description

Many analyses of time series data involve multiple, related variables.  Multiple Time Series Models presents many specification choices and special challenges.  This book reviews the main competing approaches to modeling multiple time series: simultaneous equations, ARIMA, error correction models, and vector autoregression.  The text focuses on vector autoregression (VAR) models as a generalization of the other approaches mentioned.  Specification, estimation, and inference using these models is discussed.  The authors also review arguments for and against using multi-equation time series models. Two complete, worked examples show how VAR models can be employed. An appendix discusses software that can be used for multiple time series models and software code for replicating the examples is available.

Key Features

Offers a detailed comparison of different time series methods and approaches.
Includes a self-contained introduction to vector autoregression modeling.
Situates multiple time series modeling as a natural extension of commonly taught statistical models.

Contents

List of Figures
List of Tables
Series Editor?s Introduction
Preface
1. Introduction to Multiple Time Series Models
1.1 Simultaneous Equation Approach
1.2 ARIMA Approach
1.3 Error Correction or LSE Approach
1.4 Vector Autoregression Approach
1.5 Comparison and Summary
2. Basic Vector Autoregression Models
2.1 Dynamic Structural Equation Models
2.2 Reduced Form Vector Autoregressions
2.3 Relationship of a Dynamic Structural Equation Model to a Vector Autoregression Model
2.4 Working With This Model
2.5 Specification and Analysis of VAR Models
2.6 Other Specification Issues
2.7 Unit Roots and Error Correction in VARs
2.8 Criticisms of VAR
3. Examples of VAR Analyses
3.1 Public Mood and Macropartisanship
3.2 Effective Corporate Tax Rates
3.3 Conclusion
Appendix: Software for Multiple Time Series Models
Notes
References
Index
About the Authors

最近チェックした商品