光合成の分子メカニズム(第2版)<br>Molecular Mechanisms of Photosynthesis (2ND)

個数:

光合成の分子メカニズム(第2版)
Molecular Mechanisms of Photosynthesis (2ND)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 296 p.
  • 言語 ENG
  • 商品コード 9781405189750
  • DDC分類 580

Full Description

With the clear writing and accessible approach that have made it the authoritative introduction to the field of molecular photosynthesis, this fully revised and updated edition now offers students and researchers cutting-edge topical coverage of bioenergy applications and artificial photosynthesis; advances in biochemical and genetic methods; as well as new analytical techniques. Chapters cover the origins and evolution of photosynthesis; carbon metabolism; photosynthetic organisms and organelles; and the basic principles of photosynthetic energy storage. The book's website includes downloadable PowerPoint slides.

Contents

Introduction to the second edition xi Acknowledgements xiii About the companion website xv Chapter 1 The basic principles of photosynthetic energy storage 1 1.1 What is photosynthesis? 1 1.2 Photosynthesis is a solar energy storage process 2 1.3 Where photosynthesis takes place 4 1.4 The four phases of energy storage in photosynthesis 5 References 9 Chapter 2 Photosynthetic organisms and organelles 11 2.1 Introduction 11 2.2 Classification of life 12 2.3 Prokaryotes and eukaryotes 14 2.4 Metabolic patterns among living things 15 2.5 Phototrophic prokaryotes 15 2.6 Photosynthetic eukaryotes 21 References 24 Chapter 3 History and early development of photosynthesis 27 3.1 Van Helmont and the willow tree 27 3.2 Carl Scheele, Joseph Priestley, and the discovery of oxygen 27 3.3 Ingenhousz and the role of light in photosynthesis 28 3.4 Senebier and the role of carbon dioxide 29 3.5 De Saussure and the participation of water 29 3.6 The equation of photosynthesis 29 3.7 Early mechanistic ideas of photosynthesis 30 3.8 The Emerson and Arnold experiments 32 3.9 The controversy over the quantum requirement of photosynthesis 34 3.10 The red drop and the Emerson enhancement effect 35 3.11 Antagonistic effects 36 3.12 Early formulations of the Z scheme for photosynthesis 37 3.13 ATP formation 38 3.14 Carbon fixation 38 References 38 Chapter 4 Photosynthetic pigments: structure and spectroscopy 41 4.1 Chemical structures and distribution of chlorophylls and bacteriochlorophylls 41 4.2 Pheophytins and bacteriopheophytins 47 4.3 Chlorophyll biosynthesis 47 4.4 Spectroscopic properties of chlorophylls 50 4.5 Carotenoids 54 4.6 Bilins 57 References 58 Chapter 5 Antenna complexes and energy transfer processes 59 5.1 General concepts of antennas and a bit of history 59 5.2 Why antennas? 60 5.3 Classes of antennas 62 5.4 Physical principles of antenna function 63 5.5 Structure and function of selected antenna complexes 71 5.6 Regulation of antennas 82 References 84 Chapter 6 Reaction centers and electron transport pathways in anoxygenic phototrophs 89 6.1 Basic principles of reaction center structure and function 90 6.2 Development of the reaction center concept 90 6.3 Purple bacterial reaction centers 91 6.4 Theoretical analysis of biological electron transfer reactions 96 6.5 Quinone reductions, role of the Fe and pathways of proton uptake 98 6.6 Organization of electron transfer pathways 101 6.7 Completing the cycle the cytochrome bc1 complex 103 6.8 Membrane organization in purple bacteria 107 6.9 Electron transport in other anoxygenic phototrophic bacteria 108 References 109 Chapter 7 Reaction centers and electron transfer pathways in oxygenic photosynthetic organisms 111 7.1 Spatial distribution of electron transport components in thylakoids of oxygenic photosynthetic organisms 111 7.2 Noncyclic electron flow in oxygenic organisms 113 7.3 Photosystem II structure and electron transfer pathway 113 7.4 Photosystem II forms a dimeric supercomplex in the thylakoid membrane 114 7.5 The oxygen-evolving complex and the mechanism of water oxidation by Photosystem II 116 7.6 The structure and function of the cytochrome b6f complex 120 7.7 Plastocyanin donates electrons to Photosystem I 122 7.8 Photosystem I structure and electron transfer pathway 123 7.9 Ferredoxin and ferredoxin-NADP reductase complete the noncyclic electron transport chain 126 References 129 Chapter 8 Chemiosmotic coupling and ATP synthesis 133 8.1 Chemical aspects of ATP and the phosphoanhydride bonds 133 8.2 Historical perspective on ATP synthesis 135 8.3 Quantitative formulation of proton motive force 137 8.4 Nomenclature and cellular location of ATP synthase 138 8.5 Structure of ATP synthase 138 8.6 The mechanism of chemiosmotic coupling 141 References 143 Chapter 9 Carbon metabolism 147 9.1 The Calvin Benson cycle is the primary photosynthetic carbon fixation pathway 147 9.2 Photorespiration is a wasteful competitive process to carboxylation 160 9.3 The C4 carbon cycle minimizes photorespiration 163 9.4 Crassulacean acid metabolism avoids water loss in plants 166 9.5 Algae and cyanobacteria actively concentrate CO2 168 9.6 Sucrose and starch synthesis 169 9.7 Other carbon fixation pathways in anoxygenic phototrophs 173 References 173 Chapter 10 Genetics, assembly, and regulation of photosynthetic systems 177 10.1 Gene organization in anoxygenic photosynthetic bacteria 177 10.2 Gene expression and regulation of purple photosynthetic bacteria 179 10.3 Gene organization in cyanobacteria 180 10.4 Chloroplast genomes 181 10.5 Pathways and mechanisms of protein import and targeting in chloroplasts 182 10.6 Gene regulation and the assembly of photosynthetic complexes in cyanobacteria and chloroplasts 186 10.7 The regulation of oligomeric protein stoichiometry 188 References 189 Chapter 11 The use of chlorophyll fluorescence to probe photosynthesis 193 11.1 The time course of chlorophyll fluorescence 194 11.2 The use of fluorescence to determine the quantum yield of Photosystem II 195 11.3 Fluorescence detection of nonphotochemical quenching 196 11.4 The physical basis of variable fluorescence 197 References 197 12.1 Introduction 199 Chapter 12 Origin and evolution of photosynthesis 199 12.2 Early history of the Earth 199 12.3 Origin and early evolution of life 200 12.4 Geological evidence for life and photosynthesis 202 12.5 The nature of the earliest photosynthetic systems 206 12.6 The origin and evolution of metabolic pathways with special reference to chlorophyll biosynthesis 207 12.7 Evolutionary relationships among reaction centers and other electron transport components 212 12.8 Do all photosynthetic reaction centers derive from a common ancestor? 214 12.9 The origin of linked photosystems and oxygen evolution 215 12.10 Origin of the oxygen-evolving complex and the transition to oxygenic photosynthesis 218 12.11 Antenna systems have multiple evolutionary origins 221 12.12 Endosymbiosis and the origin of chloroplasts 223 12.13 Most types of algae are the result of secondary endosymbiosis 226 12.14 Following endosymbiosis, many genes were transferred to the nucleus, and proteins were reimported to the chloroplast 226 12.15 Evolution of carbon metabolism pathways 229 References 230 Chapter 13 Bioenergy applications and artificial photosynthesis 237 13.1 Introduction 237 13.2 Solar energy conversion 237 13.3 What is the efficiency of natural photosynthesis? 239 13.4 Calculation of the energy storage efficiency of oxygenic photosynthesis 241 13.5 Why is the efficiency of photosynthesis so low? 241 13.6 How might the efficiency of photosynthesis be improved? 242 13.7 Artificial photosynthesis 243 References 247 Appendix: Light, energy, and kinetics 249 Index 287

最近チェックした商品