Best Practices in Quantitative Methods for Developmentalists (Monographs of the Society for Research in Child Development)

個数:

Best Practices in Quantitative Methods for Developmentalists (Monographs of the Society for Research in Child Development)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 150 p.
  • 言語 ENG
  • 商品コード 9781405169417
  • DDC分類 155

Full Description

The role of quantitative methods in testing developmental hypotheses is widely recognized, yet even very experienced quantitative researchers often lack the knowledge required for good decision-making on methodology. The end result is a disconnect between research and practice in methods. The purpose of this monograph is to fill a gap in the literature by offering a series of overviews on common data-analytic issues of particular interest to researchers in child development. Our hope is that this monograph will make already developed methods accessible to developmentalists so they can understand and use them in their research. We start at the beginning with chapters on data management and measurement, two neglected topics in methods training despite the fact that every investigation should begin with proper consideration of each. We follow with two important topics for developmental research, missing data and growth modeling. Missing data can plague developmental work because participants sometimes miss one or more assessment points. Growth modeling methods offer researchers a true means to assess change over time as compared with cruder methods like difference scores and residualized change scores. Then comes a discussion of mediation and moderation, two tools that can be used to elucidate developmental processes. Because so much developmental science is non-experimental, we include a chapter on selection bias that compares five modeling strategies. Proper attention to data management, measurement, missing data, growth modeling (whenever possible), mediation and moderation, and potential selection bias is guaranteed to result in greater precision in inference-making. Even when researchers make good decisions about methods, it is critical for them to use good judgment about the practical importance of findings, so we conclude with this important discussion. We view this monograph as a first step to getting quantitative researchers started and we believe this reference will help researchers make better-informed decisions about methodology.

Contents

BEST PRACTICES IN QUANTITATIVE. METHODS FOR DEVELOPMENTALISTS.

CONTENTS.

EDITORS' PREFACE vii.

INTRODUCTION TO THE MONOGRAPH.

Kathleen McCartney, Margaret Burchinal, and Kristen L. Bub 1.

I. DATA MANAGEMENT: RECOMMENDED PRACTICES.

Margaret Burchinal and Eloise Neebe 9.

II. MEASUREMENT ISSUES AND PSYCHOMETRICS METHODS.

IN DEVELOPMENTAL RESEARCH.

Richard G. Lambert, Lauren Nelson, Denise Brewer, and Margaret Burchinal 24.

III. MISSING DATA: WHAT TO DO WITH OR WITHOUT THEM.

Keith F. Widaman 42.

IV. GROWTH CURVE ANALYSIS: AN INTRODUCTION TO VARIOUS.

METHODS FOR ANALYZING LONGITUDINAL DATA.

Margaret Burchinal, Lauren Nelson, and Michele Poe 65.

V. CONTEMPORARY ADVANCES AND CLASSIC ADVICE FOR.

ANALYZING MEDIATING AND MODERATING VARIABLES.

Eric Dearing and Lawrence C. Hamilton 88.

VI. SELECTION, DETECTION, AND REFLECTION.

Kathleen McCartney, Kristen L. Bub, and Margaret Burchinal 105.

VII. THE PRACTICAL IMPORTANCE OF FINDINGS.

Roger Bakeman 127.

CONTRIBUTORS 146.

STATEMENT OF EDITORIAL POLICY 149

最近チェックした商品