記憶と計算する脳:認知科学が神経科学を変える理由<br>Memory and the Computational Brain : Why Cognitive Science Will Transform Neuroscience (Blackwell/Maryland Lectures in Language and Cognition)

個数:

記憶と計算する脳:認知科学が神経科学を変える理由
Memory and the Computational Brain : Why Cognitive Science Will Transform Neuroscience (Blackwell/Maryland Lectures in Language and Cognition)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 320 p.
  • 言語 ENG
  • 商品コード 9781405122887
  • DDC分類 573

基本説明

Offers a provocative argument that goes to the heart of neuroscience, proposing that the field can and should benefit from the recent advances of cognitive science and the development of information theory over the course of the last several decades.

Full Description

Memory and the Computational Brain offers a provocative argument that goes to the heart of neuroscience, proposing that the field can and should benefit from the recent advances of cognitive science and the development of information theory over the course of the last several decades. 

A provocative argument that impacts across the fields of linguistics, cognitive science, and neuroscience, suggesting new perspectives on learning mechanisms in the brain
Proposes that the field of neuroscience can and should benefit from the recent advances of cognitive science and the development of information theory
Suggests that the architecture of the brain is structured precisely for learning and for memory, and integrates the concept of an addressable read/write memory mechanism into the foundations of neuroscience
Based on lectures in the prestigious Blackwell-Maryland Lectures in Language and Cognition, and now significantly reworked and expanded to make it ideal for students and faculty

Contents

Preface viii

1 Information 1

Shannon's Theory of Communication 2

Measuring Information 7

Efficient Coding 16

Information and the Brain 20

Digital and Analog Signals 24

Appendix: The Information Content of Rare Versus Common 25

Events and Signals

2 Bayesian Updating 27

Bayes' Theorem and Our Intuitions about Evidence 30

Using Bayes' Rule 32

Summary 41

3 Functions 43

Functions of One Argument 43

Composition and Decomposition of Functions 46

Functions of More than One Argument 48

The Limits to Functional Decomposition 49

Functions Can Map to Multi-Part Outputs 49

Mapping to Multiple-Element Outputs Does Not Increase Expressive Power 50

Defining Particular Functions 51

Summary: Physical/Neurobiological Implications of Facts about Functions 53

4 Representations 55

Some Simple Examples 56

Notation 59

The Algebraic Representation of Geometry 64

5 Symbols 72

Physical Properties of Good Symbols 72

Symbol Taxonomy 79

Summary 82

6 Procedures 85

Algorithms 85

Procedures, Computation, and Symbols 87

Coding and Procedures 89

Two Senses of Knowing 100

A Geometric Example 101

7 Computation 104

Formalizing Procedures 105

The Turing Machine 107

Turing Machine for the Successor Function 110

Turing Machines for fis even 111

Turing Machines for f+ 115

Minimal Memory Structure 121

General Purpose Computer 122

Summary 124

8 Architectures 126

One-Dimensional Look-Up Tables (If-Then Implementation) 128

Adding State Memory: Finite-State Machines 131

Adding Register Memory 137

Summary 144

9 Data Structures 149

Finding Information in Memory 151

An Illustrative Example 160

Procedures and the Coding of Data Structures 165

The Structure of the Read-Only Biological Memory 167

10 Computing with Neurons 170

Transducers and Conductors 171

Synapses and the Logic Gates 172

The Slowness of It All 173

The Time-Scale Problem 174

Synaptic Plasticity 175

Recurrent Loops in Which Activity Reverberates 183

11 The Nature of Learning 187

Learning As Rewiring 187

Synaptic Plasticity and the Associative Theory of Learning 189

Why Associations Are Not Symbols 191

Distributed Coding 192

Learning As the Extraction and Preservation of Useful Information 196

Updating an Estimate of One's Location 198

12 Learning Time and Space 207

Computational Accessibility 207

Learning the Time of Day 208

Learning Durations 211

Episodic Memory 213

13 The Modularity of Learning 218

Example 1: Path Integration 219

Example 2: Learning the Solar Ephemeris 220

Example 3: "Associative" Learning 226

Summary 241

14 Dead Reckoning in a Neural Network 242

Reverberating Circuits as Read/Write Memory Mechanisms 245

Implementing Combinatorial Operations by Table-Look-Up 250

The Full Model 251

The Ontogeny of the Connections? 252

How Realistic Is the Model? 254

Lessons to Be Drawn 258

Summary 265

15 Neural Models of Interval Timing 266

Timing an Interval on First Encounter 266

Dworkin's Paradox 268

Neurally Inspired Models 269

The Deeper Problems 276

16 The Molecular Basis of Memory 278

The Need to Separate Theory of Memory from Theory of Learning 278

The Coding Question 279

A Cautionary Tale 281

Why Not Synaptic Conductance? 282

A Molecular or Sub-Molecular Mechanism? 283

Bringing the Data to the Computational Machinery 283

Is It Universal? 286

References 288

Glossary 299

Index 312

最近チェックした商品