Reproducing Kernel Hilbert Spaces in Probability and Statistics (2006. 378 p.)

個数:

Reproducing Kernel Hilbert Spaces in Probability and Statistics (2006. 378 p.)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 378 p.
  • 言語 ENG
  • 商品コード 9781402076794

基本説明

Focuses on some of the more fruitful and promising applications, including statistical signal processing, nonparametric curve estimation, random measures, limit theorems, and more.

Full Description

The reproducing kernel Hilbert space construction is a bijection or transform theory which associates a positive definite kernel (gaussian processes) with a Hilbert space offunctions. Like all transform theories (think Fourier), problems in one space may become transparent in the other, and optimal solutions in one space are often usefully optimal in the other. The theory was born in complex function theory, abstracted and then accidently injected into Statistics; Manny Parzen as a graduate student at Berkeley was given a strip of paper containing his qualifying exam problem- It read "reproducing kernel Hilbert space"- In the 1950's this was a truly obscure topic. Parzen tracked it down and internalized the subject. Soon after, he applied it to problems with the following fla­ vor: consider estimating the mean functions of a gaussian process. The mean functions which cannot be distinguished with probability one are precisely the functions in the Hilbert space associated to the covariance kernel of the processes. Parzen's own lively account of his work on re­ producing kernels is charmingly told in his interview with H. Joseph Newton in Statistical Science, 17, 2002, p. 364-366. Parzen moved to Stanford and his infectious enthusiasm caught Jerry Sacks, Don Ylvisaker and Grace Wahba among others. Sacks and Ylvis­ aker applied the ideas to design problems such as the following. Sup­ pose (XdO

Contents

1 Theory.- 2 RKHS AND STOCHASTIC PROCESSES.- 3 Nonparametric Curve Estimation.- 4 Measures And Random Measures.- 5 Miscellaneous Applications.- 6 Computational Aspects.- 7 A Collection of Examples.- to Sobolev spaces.- A.l Schwartz-distributions or generalized functions.- A.1.1 Spaces and their topology.- A.1.2 Weak-derivative or derivative in the sense of distributions.- A.1.3 Facts about Fourier transforms.- A.2 Sobolev spaces.- A.2.1 Absolute continuity of functions of one variable.- A.2.2 Sobolev space with non negative integer exponent.- A.2.3 Sobolev space with real exponent.- A.2.4 Periodic Sobolev space.- A.3 Beppo-Levi spaces.

最近チェックした商品