Data Quality Techniques : Strategies for Continuous Data Improvement

個数:
  • 予約

Data Quality Techniques : Strategies for Continuous Data Improvement

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 320 p.
  • 言語 ENG
  • 商品コード 9781398628007

Full Description

Equip yourself with proven techniques to turn poor-quality data from a costly liability into a measurable advantage.

Data Quality Techniques is a hands-on guide for mid-career data professionals who need to transform data into a reliable, strategic asset. Designed around the Conformed Dimensions of Data Quality framework, this book shows how to define and measure data quality and communicate expectations in ways that drive real business impact.

With clear definitions, industry examples and actionable tools, you'll learn how to:
- Improve data consistency and accuracy
- Uncover hidden data quality issues
- Apply data governance principles to data quality projects
- Anticipate the role of AI in shaping the future of data quality

Packed with real-world examples from IT, insurance and healthcare, Data Quality Techniques gives you the frameworks and tools to improve your data so that it supports growth, compliance and smarter decision making.

Themes include: data quality management, data governance, data consistency, AI in data, data profiling, data strategy, data management techniques

Contents

Section - ONE: Introduction;

Chapter - 01: Why data quality matters;
Chapter - 02: Communication data requirements with the dimensions of data quality;
Chapter - 03: Trends in the adoption of the dimensions of data quality;

Section - TWO: Techniques to manage and improve data quality;

Chapter - 04: Introduction to techniques for management and improvements;
Chapter - 05: Top-down and bottom-up approaches;
Chapter - 06: Validating your data quality;
Chapter - 07: Completeness and consistency techniques;
Chapter - 08: Methods of profiling data;
Chapter - 09: Human-directed auditing;
Chapter - 10: Conducting objective and subjective surveys;
Chapter - 11: Data contracts and the role of data governance;

Section - THREE: Conformed dimensions - a standard set of dimensions of depth;

Chapter - 12: Completeness - where to start when you don't have the data;
Chapter - 13: Accuracy - when your data isn't correct;
Chapter - 14: Precision- how granular does your data need to be;
Chapter - 15: Consistency - comparing your data to other sources;
Chapter - 16: Validity - when data isn't a valid combination;
Chapter - 17: Timeliness, currency and accessibility - which measure to use;
Chapter - 18: Integrity - ensuring correct connectivity;
Chapter - 19: Lineage - building confidence;
Chapter - 20: Representation - provide more context;

Section - FOUR: Preparing for the future of data quality;

Chapter - 21: Current versus future improvements with AI;
Chapter - 22: Improved transparency and privacy with blockchain;

最近チェックした商品