Prognostics and Health Management in Energy and Power Systems : Integrating Situation Awareness into Large-Scale Foundation Models

個数:
  • 予約

Prognostics and Health Management in Energy and Power Systems : Integrating Situation Awareness into Large-Scale Foundation Models

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 272 p.
  • 言語 ENG
  • 商品コード 9781394366996

Full Description

Key insights and practical guidance on transitioning to clean energy while meeting increasing energy demands, covering AI developments and more

Prognostics and Health Management in Energy and Power Systems explores two highly topical subjects, energy transition and the latest advances in Artificial Intelligence, and provides insights and practical guidance for a smooth transition to clean, low-carbon energy while simultaneously continuing to meet the ever-increasing demand for energy.

The first part of this book is completely devoted to the challenges, trends, and Asset Management requirements for the energy transition and explains why the energy system of the future must be resilient, autonomous, anticipatory, and situation-aware. The second part of the book presents key developments in recent years and shows the gradual shift from a collection of monolithic architectures for narrow, singular tasks to a set of modular, reconfigurable architectures capable of handling different types of tasks. An industrial case study is illustrated in the third part of the book, showing that Large-Scale Foundation models represent a promising technique to support the Prognostics and Health Management of the energy system.

Prognostics and Health Management in Energy and Power Systems includes information on:

Key differences between reliability and resilience, covering Low-Impact, High-Probability events and High-Impact, Low-Frequency events
Important factors in the operation of current and future power plants and substations, including software, complexity, human error, data, and maintenance
Modularity, reliability, and explainability of Large-Scale Foundation models
Transformer-based Deep Neural Networks, covering Attention Mechanisms, Positional Encoding, and input-output data embedding
Graph-based approaches to prognostics of complex machinery with sparse Run-to-Failure data, covering diagnostics feature extraction and graph dataset generation

Prognostics and Health Management in Energy and Power Systems is an essential forward-thinking reference for engineers and researchers working in the energy sector with an interest in AI techniques and Machine Learning.

最近チェックした商品